EGR 101
LABORATORY 4
Systems of Equations in Engineering: The Two-Loop Circuit
Wright State University
OBJECTIVE: The objective of this laboratory is to learn the basics of systems of equations and matrices and its application in engineering.

EDUCATIONAL OBJECTIVES:

After performing this experiment, students should be able to:

1. Write loop equations.
2. Solve the unknowns by finding the inverse of the matrix and Cramer's Rule.
3. Solve the equations and find the unknowns by the substitution method.

BACKGROUND:

- Writing the Loop equations:

Using the Kirchoff's voltage law, write the loop equations for the circuit shown in Figure 1.

Figure 1: Electrical Circuit to calculate the current in the two loops.
Hence the loop equations are:

$$
\begin{equation*}
\text { Loop 1: } R_{1} * I_{1}+R_{2} *\left(I_{1}-I_{2}\right)=V \tag{1}
\end{equation*}
$$

Loop 2: $R_{3} * I_{2}+R_{4} * I_{2}-R_{2} *\left(I_{1}-I_{2}\right)=0$

The currents \mathbf{I}_{1} and \mathbf{I}_{2} in equations (1) and (2) can be solved using the following three methods:
a) Substitution method.
b) Matrix Algebra method.
c) Cramer's rule.

Notes: Review the lecture notes to learn these methods.

PROCEDURE:

Connect the circuit shown in Figure 1. Use $\mathrm{R}_{1}=\mathrm{R}_{2}=100 \Omega$ and $\mathrm{R}_{3}=\mathrm{R}_{4}=200 \Omega$

1. Adjust the value of the voltage source as shown in the Table 1.
2. Measure and record current \mathbf{I}_{1}, which is the current reading from the supply.
3. Measure and record current \mathbf{I}_{2}, which is the current in Loop 2, using the ammeter as shown in the Figure 1.

Table 1: To verify the value of the measured and calculated currents.

No.	Voltage Source $\left[\mathrm{V}_{\mathrm{s}}\right]$ (V)	Measured current $\left[\mathrm{I}_{1}\right]$ (A)	Measured current $\left[I_{2}\right]$ (A)	Calculated current $\left[I_{1}\right]$ (A)	Calculated current $\left[I_{2}\right]$ (A)
1.	5				
2.	7				

4. Substitute the values of the resistances and the voltage in the loop equations (1) and (2).
5. Writing the equations in the matrix form as shown below,

$$
\left[\begin{array}{cc}
\left(R 1+R_{2}\right) & -R_{2} \\
-R_{2} & \left(R_{2}+R_{3}+R_{4}\right)
\end{array}\right] \cdot\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{l}
V \\
0
\end{array}\right]
$$

6. The value of the currents can be found using the formula:

$$
I=R^{-1} v
$$

where $\mathrm{I}=\left[\begin{array}{c}I_{1} \\ I_{2}\end{array}\right]$ is current vector, $\mathrm{R}=\left[\begin{array}{cc}\left(R 1+R_{2}\right) & -R_{2} \\ -R_{2} & \left(R_{2}+R_{3}+R_{4}\right)\end{array}\right]$ is the resistance matrix and $\mathrm{v}=\left[\begin{array}{l}V \\ 0\end{array}\right]$ is voltage vector.
7. Find the value of \boldsymbol{I}_{1} and \mathbf{I}_{2} from the three different methods and record these values in Table I.
8. Compare the values of the calculated currents with the measured currents.
9. Write an m-file to find the values of the currents $\boldsymbol{I}_{\mathbf{1}}$ and $\mathbf{I}_{\mathbf{2}}$ by using the Matrix Algebra method.

LAB NOTEBOOK:

1. Show the completed Table 1.
2. Show calculations to solve the currents \mathbf{I}_{1} and $\mathbf{I}_{\mathbf{2}}$ using the three methods described earlier.

APPENDIX

MATLAB Program:

```
clear all
clc
% to input the value of voltage source
V=input('Input the value of Voltage : ');
% to input the value of the resistances
r1=input('Input the value of R1:');
r2=input('Input the value of R2: ');
r3=input('Input the value of R3:');
r4=input('Input the value of R4 : ');
% matrix V
v=[\ 0]'
% matrix R (from the equations)
R=[-(r1+r2) r2; -r2 (-r3-r4+r2)]
% to calculate current using the inverse function
I=inv(R)*v
```

