Chapter 9b: Numerical Methods for Calculus and Differential Equations

• Initial-Value Problems
• Euler Method
• Time-Step Independence
• MATLAB ODE Solvers
Initial-Value Problems

Consider a skydiver falling from an airplane. A Free-Body Diagram of the skydiver is shown:

Newton’s First Law is given by:

\[\sum F = ma \]

\[mg - F_D = m \frac{dv}{dt} \]

Substitute an expression for the Aerodynamic Drag Force:

\[mg - \frac{1}{2} \rho v^2 AC_D = m \frac{dv}{dt} \]
Initial-Value Problems

\[mg - \frac{1}{2} \rho v^2 A C_D = m \frac{dv}{dt} \]

This is a First-Order Ordinary Differential Equation. In particular, it is called an Initial-Value Problem, because it is solved by knowing an Initial Value of the Dependent Variable. For instance, we can assume that the Downward Velocity of the skydiver was initially zero:

\[v = 0 \text{ at } t = 0 \]
Euler Method

\[mg - \frac{1}{2} \rho v^2 AC_D = m \frac{dv}{dt}; \quad v = 0 \text{ at } t = 0 \]

This Initial-Value Problem can be solved for the skydiver’s velocity as a function of time by using the Euler Method, which starts with the Definition of the Derivative. The derivative of the velocity is:

\[\frac{dv}{dt} = \lim_{\Delta t \to 0} \frac{v(t + \Delta t) - v(t)}{\Delta t} \]

The derivative of the velocity can be approximated by allowing \(\Delta t \) be a small (but finite) value:

\[\frac{dv}{dt} \approx \frac{v(t + \Delta t) - v(t)}{\Delta t} \]
Euler Method

\[
\frac{dv}{dt} = \frac{1}{m} \left(mg - \frac{1}{2} \rho v^2 AC_D \right)
\]

\[
\frac{v(t + \Delta t) - v(t)}{\Delta t} = \frac{1}{m} \left(mg - \frac{1}{2} \rho v^2 AC_D \right)
\]

\[
v(t + \Delta t) = v(t) + \frac{\Delta t}{m} \left(mg - \frac{1}{2} \rho [v(t)]^2 AC_D \right)
\]

Knowing the Initial Condition for the velocity, the skydiver’s velocity can now be found by Marching Forward in Time.
Euler Method

\[v(t + \Delta t) = v(t) + \frac{\Delta t}{m} \left(mg - \frac{1}{2} \rho [v(t)]^2 AC_D \right) \]

This equation can be cast into a form appropriate for solution using MATLAB. This is called the **Difference Equation**:

\[v_{k+1} = v_k + \frac{\Delta t}{m} \left(mg - \frac{1}{2} \rho (v_k)^2 AC_D \right) \]

Find the position by integrating the velocity:

\[x_{k+1} = x_k + \frac{\Delta t}{2} (v_k + v_{k+1}) \]

Find the time by incrementing:

\[t_{k+1} = t_k + \Delta t \]
Euler Method

Let $\Delta t = 0.1 \text{ sec}$, $C_D = 0.8$, $A = 0.4 \text{ m}^2$, $\rho = 1.225 \text{ kg/m}^3$, $m = 82 \text{ kg}$, $g = 9.81 \text{ m/s}^2$

Initial Velocity: $v(t = 0) = 0$ or $v(1) = 0$

Initial Position: $x(t = 0) = 0$ or $x(1) = 0$

$$v_{k+1} = v_k + \frac{\Delta t}{m} \left(mg - \frac{1}{2} \rho (v_k)^2 AC_D \right)$$

$$v(2) = (0) + \frac{(0.1)}{(82)} \left((82)(9.81) - \frac{1}{2} (1.225)(0)^2 (0.4)(0.8) \right)$$

$$= 0.981 \text{ m/s}$$

$$x(2) = (0) + \frac{(0.1)}{2} [(0) + (0.981)] = 0.04905 \text{ m}$$

$$t(2) = 0 + 0.1 = 0.1 \text{ sec}$$
% Falling Skydiver: Euler Method
CD = 0.8; % Coefficient of Drag of the Skydiver's Body (Dimensionless)
A = 0.4; % Projected Area of the Skydiver's Body, m^2
rho = 1.225; % Density of Air, kg/m^3
m = 82; % Mass of Skydiver, kg
g = 9.81; % Acceleration due to Gravity, m/s^2
N = 3;
delta_t = 0.1;
t(1) = 0; % Initial Time, s
x(1) = 0; % Initial Position, m
v(1) = 0; % Initial Velocity, m/s

for k = 1:N
 v(k+1) = v(k) + delta_t/m*(m*g - 0.5*rho*v(k)^2*A*CD);
 x(k+1) = x(k) + delta_t/2*(v(k) + v(k+1));
 t(k+1) = t(k) + delta_t;
end
Euler Method

Falling Skydiver

Velocity v (m/s) and Position x (m)

Time t (sec)
Euler Method

Falling Skydiver

Graph:
- **Skydiver Velocity (m/s):**
- **Skydiver Position (m):**

Time (seconds):
- 0 to 35
The solution of the differential equation for the skydiver is dependent on the chosen time step Δt. As the time step size decreases, the solution curves begin to overlap. This is called **Time-Step Independence**. Conversely, if Δt becomes too large, the solution can become **unstable**, as shown for $\Delta t = 5.0$ seconds.
MATLAB ODE Solvers

- The **Euler Method** uses a fixed time step size that we specify and control.
- MATLAB has **built-in ODE solvers** that use variable step sizes. This speeds up the solution time. However, you no longer have control of the time step size.

 - **ode45**: Combination of 4th- and 5th-order Runge-Kutta methods.
 - **ode15s**: Used when **ode45** has difficulty.

- Basic syntax:

 \[
 [t, y] = \texttt{ode45}(\texttt{@ydot}, \texttt{tspan}, \texttt{y0})
 \]
MATLAB ODE Solvers

\[[t, \ y] = \text{ode45}(@ydot,tspan,y0) \]

@ydot: Handle of function file that describes ODE equation.
tspan: Starting and ending values of time \(t \)
\[[t_0, t_{\text{final}}] \]
y0: Initial value of \(y(0) \)

Use MATLAB to compute and plot the solution of the following equation:

\[10 \frac{dy}{dt} + y = 20 + 7 \sin(2t) \quad y(0) = 15 \]
MATLAB ODE Solvers

\[10 \frac{dy}{dt} + y = 20 + 7 \sin(2t) \quad y(0) = 15 \]

\[\dot{y} = -\frac{1}{10} y + \frac{20}{10} + \frac{7}{10} \sin(2t) = -0.1y + 2 + 0.7\sin(2t) \]

Function File:

```matlab
function [ ydot ] = equation( t, y )

% page 387, T9.3-1

ydot = -y/10 + 2 + 0.7*sin(2*t);

end
```
MATLAB ODE Solvers

\[\dot{y} = -0.1y + 2 + 0.7 \sin(2t) \quad y(0) = 15 \]

Script File: use ode45

```matlab
% page 387, T9.3-1
clc
clear
[t,y] = ode45(@equation, [0 100], 15);
plot(t,y), xlabel('Time (sec)'), ylabel('y')
```
MATLAB ODE Solvers

\[\dot{y} = -0.1y + 2 + 0.7 \sin(2t) \quad y(0) = 15 \]

ode45 does not resolve the solution well: Note the sharp peaks. Use ode15 to improve resolution.
MATLAB ODE Solvers

\[\dot{y} = -0.1y + 2 + 0.7 \sin(2t) \quad y(0) = 15 \]

Script File: Use `ode15s`

```matlab
% page 387, T9.3-1
clc
clear
[t, y] = ode15s(@equation, [0 100], 15);
plot(t, y), xlabel('Time (sec)'), ylabel('y')
```
MATLAB ODE Solvers

\[\dot{y} = -0.1y + 2 + 0.7 \sin(2t) \quad y(0) = 15 \]
Problem 9.22:
Using the Euler Method, find the solution of the equation

\[6 \dot{y} + y = f(t) \]

if \(f(t) = 0 \) for \(t < 0 \) and \(f(t) = 15 \) for \(t \geq 0 \). The initial condition is \(y(0) = 7 \).

The Exact Solution is obtained by using the Integrating Factor Method:

\[y(t) = 7e^{-t/6} + 15\left(1 - e^{-t/6}\right) \]

Plot the Exact Solution and the Euler Method Solution on the same graph to prove that your solution is Time-Step Independent.
Problem 9.22:

![Graph showing a function $y(t)$ over time t.]
Problem 9.25:
The equation of motion of a rocket-propelled sled is, from Newton’s Law,

\[m \dot{v} = f - cv \]

where \(m = 1000 \) kg is the sled mass, \(f = 75,000 \) N for \(t > 0 \) is the rocket thrust, and \(c = 500 \) N-s/m is an air resistance coefficient. Suppose that the initial velocity is \(v(0) = 0 \). Using the Euler Method, determine the speed of the sled until \(t = 10 \) seconds. Plot the sled velocity versus time, and show that the solution is independent of time step size.