1. (15 points) The motion of the backhoe bucket shown is controlled by the hydraulic cylinders AD, CD, and EF. As a result of an attempt to dislodge a portion of a slab, a 2-kip force P is exerted on the bucket teeth at J. Knowing that $\theta = 45^\circ$, determine the force exerted by cylinder EF.

\[X = 51.4 \]
2. (15 points) A stadium roof truss is loaded as shown. Determine the force in members AE, EF, and FJ.

\[\text{Diagram of the truss with forces and dimensions.} \]
3. (20 points) For the stop bracket shown, locate the x coordinate of the center of gravity. The bracket is made entirely of the same material.
4. (50 points total) Part 1: (15 points) Draw the freebody diagrams for the following situations.

Part 2: (35 points) Solve problem (d). Hint: use $M_{EA} = \vec{r}_{EA} \cdot \vec{M}_E = 0$.

Member ABC is supported by a pin and bracket at B and by an inextensible cord attached at A and C and passing over a frictionless pulley at D. The tension may be assumed to be the same in portions AD and CD of the cord. For the loading shown and neglecting the size of the pulley, determine the tension in the cord and the reaction at B.

The bent rod $ABEF$ is supported by bearings at C and D and by wire AH. Knowing that portion AB of the rod is 250 mm long, determine the tension in the wire AH and the reactions at C and D. Assume that the bearing at D does not exert any axial thrust.

A 250 x 400-mm plate of mass 12 kg and a 300-mm-diameter pulley are welded to axle AC which is supported by bearings at A and B. For $\beta = 30^\circ$, determine the tension in the cable and the reactions at A and B. Assume that the bearing at B does not exert any axial thrust.

The bent rod $ABDE$ is supported by ball-and-socket joints at A and E and by the cable DF. If a 60-lb load is applied at C as shown, determine the tension in the cable.
Determine forces exerted by each cylinder.

FBD of Bucket:

\[\vec{F}_{cc} \]

\[\vec{P} = (2 \cos 45^\circ) \hat{c} + (-2 \sin 45^\circ) \hat{v} \text{ kip} \]

\[\vec{P} = (1.41) \hat{c} + (-1.41) \hat{v} \text{ kip} \]

\[\theta = \tan^{-1} \left(\frac{60}{45} \right) = 53.1^\circ \]

\[\vec{F}_{cc} = (F_{cc} \cos 53.1^\circ) \hat{c} + (F_{cc} \sin 53.1^\circ) \hat{v} \text{ kip} \]

\[\vec{F}_{cc} = (0.6 F_{cc}) \hat{c} + (-0.8 F_{cc}) \hat{v} \]

\[\Sigma M_H = 0 \iff \]

\[(8\text{ in})(1.41 \text{ kip}) + (16\text{ in})(1.41) - (10\text{ in})(0.8 F_{cc}) - (10\text{ in})(0.6 F_{cc}) = 0 \]
FBD of ARM IDB, ARM ABH and Bucket:

\[\vec{p} = (1.41)^2 + (-1.41)^2 \]

\[\theta = \tan^{-1} \left(\frac{16}{40} \right) = 21.8^\circ \]

\[\vec{F}_{EF} = (-\vec{F}_{EF} \cos 21.8^\circ) \hat{i} + (-\vec{F}_{EF} \sin 21.8^\circ) \hat{j} \text{ kip} \]

\[\vec{F}_{EF} = (-0.928 \vec{F}_{EF}) \hat{i} + (-0.371 \vec{F}_{EF}) \hat{j} \text{ kip} \]

\[\sum M_x = 0 \]

\[(34'' \times 0.928 \vec{F}_{EF}) - (40'' \times 0.371 \vec{F}_{EF}) + (28'' \times 1.41) - (120'' \times 1.41) = 0 \]

\[\vec{F}_{EF} = 7.76 \text{ kip tension} \]
EXAMPLE PROB. 6.56

\[\sum M_E = 0 + 9 \]
\[-(2.4m \times 10.5\, \text{kN}) + (2.4)(2) + (1.6)(4) + (0.8)(4) - (0.4)F_{EG} = 0 \]

\[F_{EG} = -27\, \text{kN} \quad \text{(compression)} \]
\[\theta = \tan^{-1} \left(\frac{9}{8} \right) = 48.4^\circ \]

\[\vec{F}_{AE} = (-\cos 48.4^\circ F_{AE}) i + (-\sin 48.4^\circ F_{AE}) j \text{ kips} \]

\[\vec{F}_{AE} = (-0.664 F_{AE}) i + (-0.748 F_{AE}) j \]

\[\Sigma F_x = 0 : \]

\[-F_{FE} - 0.664 F_{AE} = 0 \]

\[F_{FE} = -0.664 F_{AE} \quad \text{(eqn. 1)} \]

\[F_{AE} = -1.51 F_{FE} \quad \text{(eqn. 1)} \]

\[\Sigma M_A = 0 \quad \text{for} \]

\[-(9 \text{ ft}) F_{FE} - (12)(1.8) - (26)(1.8) - (40)(0.9) = 0 \]
\[F_{FE} = -11.6 \text{ kips (compression)} \]
\[F_{AE} = -1.5 \times (-11.6) = 17.5 \text{ kips (tension)} \]
\[\sum M_E = 0 \]
\[-(8 \times 14 \times F_{FT}) - (8)(0.9) - (20)(1.8) - (34)(1.8) - (48)(0.9) = 0 \]
\[\Rightarrow F_{FT} = -18.4 \text{ kips (compression)} \]

Homework: #6

Probs. 6.15, 6.49, 6.95, 6.145

12-**Class #7 = Prob. 6.1**
PROB. 3

\[\overline{X} = \frac{\sum X_i W_i}{\sum W_i} = \frac{\sum X_i V_i}{\sum V_i} = \frac{\sum X_i V_i}{\sum V_i} \]

REGION 1:

\[\overline{X}_1 = \frac{1}{2}(100 \ mm) = 50 \ mm \quad V_1 = (100)(12)(88) = 1.056 \times 10^5 \ mm^3 \]

REGION 2:

\[\overline{X}_2 = \frac{1}{2}(100) = 50 \ mm \quad V_2 = (100)(12)(55-12) = 5.16 \times 10^4 \ mm^3 \]
REGION 3:
\[\bar{x}_3 = \frac{1}{2} (34) = 17 \text{ mm} \]
\[V_3 = (34)(45)(12) = 1.836 \times 10^4 \text{ mm}^3 \]

REGION 4:
\[\bar{x} = \frac{1}{3} h = \frac{1}{3} (100 - 34) = 22 \text{ mm} \]
\[\bar{x}_4 = (22) + (34) = 56 \text{ mm} \]
\[V_4 = \frac{1}{2} (45)(100 - 34)(12) = 1.782 \times 10^4 \text{ mm}^3 \]

REGION 5:
\[\bar{x}_5 = 34 + \frac{1}{2} (10) = 39 \text{ mm} \]
\[V_5 = \frac{1}{2} (51)(62)(10) = 1.581 \times 10^4 \text{ mm}^3 \]

\[\sum x_i V_i = \left(50 \text{ mm} \right) \left(1.056 \times 10^5 \text{ mm}^3 \right) + \left(50 \right) \left(5.16 \times 10^4 \right) \]
\[+ \left(17 \right) \left(1.836 \times 10^4 \right) + \left(56 \right) \left(1.782 \times 10^4 \right) + \left(39 \right) \left(1.581 \times 10^4 \right) \]
\[\sum x_i V_i = 9.757 \times 10^6 \text{ mm}^4 \]

\[\sum V_i = \left(1.056 \times 10^5 \right) + \left(5.16 \times 10^4 \right) + \left(1.836 \times 10^4 \right) + \left(1.782 \times 10^4 \right) \]
\[+ \left(1.581 \times 10^4 \right) \]
\[\sum V_i = 2.092 \times 10^5 \text{ mm}^3 \]

\[\bar{x} = \frac{9.757 \times 10^6 \text{ mm}^4}{2.092 \times 10^5 \text{ mm}^3} \]
\[\bar{x} = 46.8 \text{ mm} \]
SOLUTION OF PROBLEM (d):

Find \(\overrightarrow{TD} \):

Point D: \(X_D = 16'' \), \(Y_D = 0 \), \(Z_D = 24'' \)

Point F: \(X_F = 0 \), \(Y_F = 11'' \), \(Z_F = 24 - 8 = 16'' \)

\[
\begin{align*}
\Delta x &= X_F - X_D = 0 - 16 = -16'' \\
\Delta y &= Y_F - Y_D = 11 - 0 = 11'' \\
\Delta z &= Z_F - Z_D = 16 - 24 = -8'' \\
\end{align*}
\]

\[
\overrightarrow{d} = \sqrt{(-16)^2 + 11^2 + (-8)^2} = 21''
\]

\[
T_x = \left(\frac{-16}{21} \right) = -0.762 T
\]
\[T_4 = \left(\frac{11}{21} \right) T = 0.524 \ T \]
\[T_2 = \left(\frac{-8}{21} \right) T = -0.381 \ T \]
\[\vec{T} = (-0.762 T) \hat{i} + (0.524 T) \hat{j} + (-0.381 T) \hat{k} \]

UNIT VECTOR ALONG EA:

POINT A: \(x_A = 7, \ y_A = 0, \ z_A = 0 \)

POINT E: \(x_E = 0, \ y_E = 0, \ z_E = 24 \)

\[d x = x_A - x_E = 7 - 0 = 7 \]
\[d y = y_A - y_E = 0 - 0 = 0 \]
\[d z = z_A - z_E = 0 - 24 = -24 \]
\[d = \sqrt{7^2 + 24^2} = 25 \]
\[\vec{x}_{EA} = \left(\frac{7}{25} \right) \hat{i} + \left(\frac{-24}{25} \right) \hat{k} \]

POSITION VECTOR FROM E TO D:
\[\vec{r}_{ED} = (16) \hat{i} \]

TAKE MOMENTS ABOUT E:

POINT C: \(x_c = 16, \ y_c = 0, \ z_c = 10 \)
\[\vec{M}_E = \vec{M}_1 + \vec{M}_2 = (-840) \hat{z} + (6.096T) \hat{j} + (8.384T - 960) \hat{i} \]

\[M_{EA} = \hat{X}_{EA} \cdot \vec{M}_E = 0 \]

\[M_{EA} = (0.28)(-840) + (-0.96)(8.384T - 960) = 0 \]

\[-235 - 8.05T + 922 = 0 \]

\[8.05T = 687 \]

\[T = 85.3 \text{ lb} \]