1. (25 points) The motion of the backhoe bucket shown is controlled by the hydraulic cylinders \(AD, CD, \) and \(EF \). As a result of an attempt to dislodge a portion of a slab, a 2-kip force \(P \) is exerted on the bucket teeth at \(J \). Knowing that \(\theta = 45^\circ \), determine the force exerted by cylinder \(EF \).
2. (25 points) A stadium roof truss is loaded as shown. Determine the force in members AE, EF, and FJ.

![Diagram of a stadium roof truss with loadings and forces indicated.]
3. (30 points) For the stop bracket shown, locate the x coordinate of the center of gravity. The bracket is made entirely of the same material.
4. (20 points) Draw the free-body diagrams for the following situations.

5. Bonus Question: (20 points, No partial credit will be awarded) Solve problem (d). Hint: use $M_{EA} = \lambda_{EA} \cdot \lambda_{F} = 0$.

(a)

Member ABC is supported by a pin and bracket at B and by an inextensible cord attached at A and C and passing over a frictionless pulley at D. The tension may be assumed to be the same in portions AD and CD of the cord. For the loading shown and neglecting the size of the pulley, determine the tension in the cord and the reaction at B.

(b)

The bent rod $ABEF$ is supported by bearings at C and D and by wire AH. Knowing that portion AB of the rod is 250 mm long, determine the tension in the wire AH and the reactions at C and D. Assume that the bearing at D does not exert any axial thrust.

(c)

A 250 \times 400-mm plate of mass 12 kg and a 300-mm-diameter pulley are welded to axle AC which is supported by bearings at A and B. For $\beta = 30^\circ$, determine the tension in the cable and the reactions at A and B. Assume that the bearing at B

(d)

The bent rod $ABDE$ is supported by ball-and-socket joints at A and E and by the cable DF. If a 60-lb load is applied at C as shown, determine the tension in the cable.
does not exert any axial thrust.