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Appendix A. SBA Programming Language Summary

pROGRAM [NAME
INPUT QuUTPUT
1 1
T [controOL | I [conTrOL]
| i ] P 1
DESTINATION
1

] 1
I I

ISEQUENCE|OPERATION

CONDITION JCALCULATION PROGRAM [NAME
INPUT ouUTPUT
€
LIE
Sl
Els
E
SCHEDULE
ACTION
SEQUENCE €TI0 CONDITION
OPERATION | 0BJECT
(INFORMATION) - (SEQUENCE} {SEND) (INVOCATION)
OPERATION OPERATION] | OPERATION | |CONTROL
CREATE GO TO SEND M {MANUAL}
DESTROY END DESTINATION ] (TRIGGER)
INITIALIZE EXIT XXX D {DELAY}
INSERT R (RESIDUE}
DELETE
UPDATE
XXX - ﬁe any program name.
o ¥
,’/ \..
Appendix B

In this section we illustrate how typical Query-by-
Example queries and SBA programs can be mapped
into predicate-calculus-like expressions. The examples
chosen are Q1, Q2 from Section 2 and program 4 from
Section 4.

Q1: {X: IY(X,RED,Y)ETYPE}
Q2: {X: IY((X,Y)ESALES A\
(Y,PARKER)ESUPPLY)}

Program 4: {(X,Y): (X,Y)ECREDIT DECISION
A3z3w3u
((U,Z)ECREDIT RATING
A (X,U,W)EORDER)
A IF (Z = A1 A W <10000)
— Y = YES}

The formal syntax of the Query-by-Example database
language is found in [7].
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1. Introduction

Dijkstra [4] and many others have made the point
that the amount of complexity that the human mind can
cope with at any instant in time is considerably less than
that embodied in much of the software that one might
wish to build. Thus the key problem in the design and
implementation of large software systems is reducing
the amount of complexity or detail that must be consid-
ered at any one time. One way to do this is via the
process of abstraction.

One of the most significant aids to abstraction used
in programming is the self-contained subroutine. At the
point where one decides to invoke a subroutine, one
can (and most often should) treat it as a “black box.” It
performs a specific arbitrarily abstract function by
means of an unprescribed algorithm. Thus, at the level
where it is invoked, it separates the relevant detail of
“what” from the irrelevant detail of “how.” Similarly,
at the level where it is implemented, it is usually unnec-
essary to complicate the “how” by considering the
“why,” i.e. the exact reasons for invoking a subroutine
often need not be of concern to its implementor. By
nesting subroutines, one may develop a hierarchy of
abstractions.

Unfortunately, the nature of the abstractions that
may be conveniently achieved through the use of sub-
routines is limited. Subroutines, while well suited to the
description of abstract events (operations), are not par-
ticularly well suited to the description of abstract ob-
jects. This is a serious drawback, for in a great many
applications the complexity of the data objects to be
manipulated contributes substantially to the overall
complexity of the problem.

2. The Abstraction of Data

The large knot of complexly interrelated attributes
associated with a data object may be separated accord-
ing to the nature of the information that the attributes
convey regarding the data objects that they qualify.
Two kinds of attributes, each of which may be studied
in isolation, are:

(1) those that describe the representation of objects
and the implementations of the operations associ-
ated with them in terms of other objects and opera-
tions, e.g. in terms of a physical store and a proces-
sor’s order code;

(2) those that specify the names and define the ab-
stract meanings of the operations associated with
an object. Though these two kinds of attributes are
in practice highly interdependent, they represent
logically independent concepts.

The empbhasis in this paper is on the second kind of
attribute, i.e. on the specification of the operations
associated with classes of data objects. At most points
in a program one is concerned solely with the behav-
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ioral characteristics of a data object. One is interested
in what one can do with it, not in how the various
operations on it are implemented. The analogy with a
closed procedure is exact. More often than not, one
need be no more concerned with the underlying repre-
sentation of the object being operated on than one
is with the algorithm used to implement an invoked
procedure.

If at a given level of refinement one is interested
only in the behavioral characteristics of certain data
objects, then any attempt to abstract data must be
based upon those characteristics, and only those char-
acteristics. The introduction of other attributes, e.g. a
representation, can only serve to cloud the relevant
issues. We use the term “abstract data type” to refer to
a class of objects defined by a representation-independ-
ent specification.

The class construct of SIMULA 67 [3] has been
used as the starting point for much of the more recent
work on embedding abstract types in programming
languages, e.g. [14, 16, 18]. While each of these offers
a mechanism for binding together the operations and
storage structures representing a type, they offer no
representation-independent means for specifying the
behavior of the operations. The only representation-
independent information that one can supply are the
domains and ranges of the various operations. One
could, for example, define a type Queue (of Items)
with the operations .

NEW: — Queue

ADD: Queue X [tem — Queue
FRONT: Queue — [tem
REMOVE: Queue — Queue

IS_LEMPTY?: Queue — Boolean

Unfortunately, however, short of supplying a represen-~
tation, the only mechanism for denoting what these
operations “mean” is a judicious choice of names.
Except for intuitions about the meaning of such words
as Queue and FRONT, the operations might just as
easily be defining type Stack as type Queue. The do-
main and range specifications for these two types are
isomorphic. To rely on one’s intuition about the mean-
ing of names can be dangerous even when dealing with
familiar types [19]. When dealing with unfamiliar types
it is almost impossible. What is needed, therefore, is a
mechanism for specifying the semantics of the opera-
tions of the type.

There are, of course, many possible approaches to
the specification of the semantics of an abstract data
type. Most, however, can be placed in one of two
categories: operational or definitional. In an opera-
tional specification, instead of trying to describe the
properties of the abstract data type, one gives a recipe
for constructing it. One begins with some well-under-
stood language or discipline and builds a model for the
type in terms of that discipline. Wulf [24], for example,
makes good use of sequences in modeling various data
structures.
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The operational approach to formal specification
has many advantages. Most significantly, operational
specifications seem to be relatively (compared to defi-
nitional specifications) easily constructed by those
trained as programmers — chiefly because the construc-
tion of operational specifications so closely resembles
programming. As the operations to be specified grow
complex, however, operational specifications tend to
get too long (see, for example, Batey [1]) to permit
substantial confidence in their aptness. As the number
of operations grows, problems arise because the rela-
tions among the operations are not explicitly stated,
and inferring them becomes combinatorially harder.

The most serious problem associated with opera-
tional specifications is that they almost always force one
to overspecify the abstraction. By introducing extra-
neous detail, they associate nonessential attributes with
the type. This extraneous detail complicates the prob-
lem of proving the correctness of an implementation by
introducing conditions that are trrelevant, yet never-
theless must be verified. More importantly, the intro-
duction of extraneous detail places unnecessary con-
straints on the choice of an implementation and may
potentially eliminate the best solutions to the problem.

Axiomatic definitions avoid this problem. The alge-
braic approach used here owes much to the work of
Hoare [13] (which in turn owes much to Floyd [5]) and
is closely related to Standish’s “axiomatic specifica-
tions” [22] and Zilles” “algebraic specifications™ [25].
Its formal basis stems from the heterogeneous algebras
of Birkhoff and Lipson [2]. An algebraic specification
of an abstract type consists of two pairs: a syntactic
specification and a set of relations. The syntactic speci-
fication provides the syntactic information that many
programming languages already require: the names,
domains, and ranges of the operations associated with
the type. The set of relations defines the meanings of
the operations by stating their relationships to one
another.

3. A Short Example

Consider type Queue (of Items) with the operations
listed in the previous section. The syntactic specifica-
tion is as above:

NEW: — Queue

ADD: Queue X ltem — Queue
FRONT: Queue > Item
REMOVE: Queue — Queuc
IS_.EMPTY?: Queue — Boolean

The distinguishing characteristic of a queue is that itis a
first in-first out storage device. A good axiomatic defi-
nition of the above operations must therefore assert
that and only that characteristic. The relations (or ax-
ioms) below comprise just such a definition. The mean-
ings of the axioms should be relatively clear. (**="" has

its standard meaning, “g’* and ‘¢ are typed free varia-
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bles, and *‘error” is a distinguished value with the
property that the value of any operation applied to an
argument list containing error is error, e.g. fulxy, . . .,
X;, €ITOT, Xi4p, . - - , Xp) = €ITOT.)
(1) IS_LEMPTY? (NEW) = true
(2) IS_LEMPTY? (ADD(q.i)) = false
(3) FRONT(NEW) = error
(4) FRONT (ADD(q,i)) = if IS_ZEMPTY? (q)
then i
else FRONT(q)
(5) REMOVE(NEW) = error
(6) REMOVE (ADD(q,))) = if IS_ZEMPTY? (q)
then NEW
else ADD(REMOVE(q),i)

Note that this set of axioms involves no assumption
about the attributes of type Item. In effect Item is a
parameter of type Type, and the specification may be
viewed as defining a type schema rather than a single
type. This will be the case for many algebraic type
specifications.

With some practice, one can become quite adept at
reading algebraic axiomatizations. Practice also makes
it easier to construct such specifications; see Guttag
[11]. Unfortunately, it does not make it trivial. It is not
always immediately clear how to attack the problem.
Nor, once one has constructed an axiomatization, is it
always easy to ascertain whether or not the axiomatiza-
tion is consistent and sufficiently complete. The mean-
ing of the operations is supplied by a set of individual
statements of fact. If any two of these are contradic-
tory, the axiomatization is inconsistent. If the combina-
tion of statements is not sufficient to convey all of the
vital information regarding the meaning of the opera-
tions of the type, the axiomatization is not sufficiently
complete.! )

Experience indicates that completeness is, in a
practical sense, a more severe problem than consist-
ency. If one has an intuitive understanding of the type
being specified, one is unlikely to supply contradictory
axioms. It is, on the other hand, extremely easy to
overlook one or more cases. Boundary conditions, e.g.
REMOVE(NEW), are particularly likely to be over-
looked.

In an attempt to ameliorate this problem, we have
devised heuristics to aid the user in the initial presenta-
tion of an axiomatic specification of the operations of
an abstract type and a system to mechanically “verify”
the sufficient-completeness of that specification. As the
first step in defining a new type, the user would supply
the system with the syntactic specification of the type
and an axiomatization constructed with the aid of the
heuristics mentioned above. Given this preliminary
specification, the system would begin to prompt the
user to supply the additional information necessary for
the system to derive a sufficiently complete axiom set

1 Sufficiently complete is a technical notion first developed in
Guttag [8]. It differs considerably from both the notion of complete-
ness commonly used in logic and that used in Zilles [25].
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for the operations. A detailed look at sufficient-com-
pleteness is contained in Guttag [8, 9].

4. An Extended Example

A common data structuring problem is the design of
the symbol table component of a compiler for a block
structured language. Many sources contain good dis-
cussions of various symbol table organizations. Setting
aside variations in form, the basic operations described
vary little from source to source. They are:

INIT: Allocate and initialize the symbol table.

ENTERBLOCK: Prepare a new local naming scope.

LEAVEBLOCK: Discard entries from the most recent scope en-
tered, and reestablish the next outer scope.

IS_INBLOCK?:  Has a specified identifier already been declared
in this scope? (Used to avoid duplicate declara-
tions.)

ADD: Add an identifier and its attributes to the symbol

table.

Return the attributes associated (in the most

local scope in which it occurs) with a specified

identifier.

RETRIEVE:

Though many references provide insights into how
these operations can be implemented, none presents a
formal definition (other than implementations) of ex-
actly what they mean. The abstract concept “symbol
table” thus goes undefined. Those who attempt to write
compilers in a top-down fashion suffer from a similar
problem. Early refinements of parts of the compiler
make use of the basic symbol table operations, but the
“meaning” of these operations is provided only by
subsequent levels of refinement. This is infelicitous in
that the clear separation of levels of abstraction is lost
and with it many of the advantages of top-down design.
By providing axiomatic semantics for the operations,
this problem can be avoided.

The thought of providing rigorous definitions for so
many operations may, at first, seem a bit intimidating.
Nevertheless, if one is to understand the refinement,
one must know what each operation means. The fol-
lowing specification of abstract type Symboltable sup-
plies these meanings.

Type: Symboltable

Operations:

INIT: — Symboltable

ENTERBLOCK: Symboltable — Symboltable

LEAVEBLOCK: Symboltable — Symboltable

ADD: Symboltable x Identifier x Attributelist —

Symboltable

IS_INBLOCK?: Symboltable x Identifier — Boolean

RETRIEVE: Symboltable x Identifier — Attributelist

Axioms:

(1) LEAVEBLOCK(INIT) = error

(2) LEAVEBLOCK(ENTERBLOCK(symtab)) = symtab

(3) LEAVEBLOCK(ADD(symtab, id, attrs)) = LEAVE-
BLOCK((symtab)

{(4) IS_INBLOCK? (INIT, id) = false

(5) IS_LINBLOCK? (ENTERBLOCK((symtab), id) = false
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(6) IS.INBLOCK? (ADD(symtab, id, attrs), idl) =
if IS_.SAME? (id, idl)?
then true
else IS_.INBLOCK? (symtab, id)
(7) RETRIEVE(INIT, id) = error
(8) RETRIEVE(ENTERBLOCK (symtab), id) =
RETRIEVE(symiab, id)
(9) RETRIEVE(ADD(symtab, id, attrs), idl)=
if IS_SAME? (id, idl)
then attrs
eise RETRIEVE(symtab, idl)

This set of relations serves a dual purpose. Not only
does it define an abstract type that can be used in the
specification of various parts of the compiler, but it also
provides a complete self-contained specification for a
major subsystem of the compiler. If one wished to
delegate the design and implementation of the symbol
table subsystem, the algebraic characterization of the
abstract type would (unlike the informal description in,
say, McKeeman [15]) be a sufficient specification of
the problem. In fact, the procedure discussed earlier
can be used to formally prove the sufficient-complete-
ness of this specification.

The next step in the design process is to further
refine type Symboltable, i.e. to provide implementa-
tions of the operations of the type. These implementa-
tions will implicitly furnish representation for values of
type Symboltable.

A representation of a type T consists of (i) any
interpretation (implementation) of the operations of
the type that is a model for the axioms of the specifica-
tion of T, and (ii) a function ¢ that maps terms in the
model domain onto their representatives in the abstract
domain. (This is basically the abstraction function of
Hoare [12].)

It is important to note that & may not have a proper
inverse. Consider, for example, type Bounded Queue
(with a maximum length of three). A reasonable repre-
sentation of the values of this type might be based on a
ring-buffer and top pointer. Given this representation,
the program segment:

x := EMPTY.Q

x := ADD.Q(x, A)
x == ADD.Q(x, B)
x = ADD.Q(x, C)
x = REMOVE.Q(x)
x := ADD.Q(x, D)

would translate to a representation for x of the form:

Top Painter

* The definition of IS_SAME? is part of the specification of an
independently defined type Identifier.
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Similarly:

EMPTY.Q

ADD.Q(x, B)
ADD.Q(x, C)
ADD.Q(x, D)

ER
0

i

would yield a representation for x of the form:

Top Pointer

l
—

It is clear that these two representations though not
identical, refer to the same abstract value. That is to
say, the mapping from values to representations, ®~1,
may be one-to-many.

The representation of type Symboltable will make
use of the abstract data types Stack (of arrays) and
Array (of attributelists) as defined below.

Type: Stack

Operations:

NEWSTACK: —> Stack

PUSH: Stack X Array — Stack
POP: Stack — Stack

TOP: Stack — Array

IS NEWSTACK?: Stack —» Boolean
REPLACE: Stack X Array — Stack
Axioms:

(10) IS_ZNEWSTACK? (NEWSTACK) = true

(11) IS NEWSTACK? (PUSH(stk, arr)) = false

(12) POP(NEWSTACK) = error

(13) POP(PUSH(stk, arr)) = stk

(14) TOP(NEWSTACK) = error

(15) TOP(PUSH(stk, arr)) = arr

(16) REPLACE(stk, arr) = if IS NEWSTACK? (stk)
then error
else PUSH(POP(stk), arr)

Type: Array

Operations:
EMPTY: — Arnay
ASSIGN: Array X Identifier X Attributelist — Array
READ: Array x Identifier — Attributelist

IS_UNDEFINED?: Array X Identifier — Boolean

Axioms:
(17) IS_UNDEFINED? (EMPTY, id) = true
(18) IS_UNDEFINED? (ASSIGN(arr, id, attrs), idl) =
if IS_.SAME? (id, idl}
then false
else IS_.UNDEFINED? (arr, idl)
(19) READ(EMPTY, id) = error
(20) READ(ASSIGN(arr, id, attrs), idl) = if IS_SAME? (id, idl)
then attrs
else READ(arr, idl)

The general scheme of the representation of type
Symboltable is to treat a value of the type as a stack of
arrays (with index type Identifier), where each array
contains the attributes for the identifiers declared in a
single block. For every function f in the more abstract
domain (e.g. type Symboltable), a functionf’ is defined
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in the lower-level domain; thus we have:

INIT': — Stack

ENTERBLOCK': Stack — Stack

LEAVEBLOCK': Stack — Stack

ADD': Stack X Identifier X Attributelist — Stack
ISJINBLOCK?':  Stack x Identifier — Boolean
RETRIEVE": Stack x Identifier — Attributelist

The “code” for each of these functions is (*::”” means
“is defined as™):

INIT' :: PUSH(NEWSTACK, EMPTY)
ENTERBLOCK/(stk) :: PUSH(stk, EMPTY)
LEAVEBLOCK (stk) :: if IS_ZNEWSTACK? (POP(stk))
then error
else POP(stk)

ADD’(stk, id, attrs) :: REPLACE(stk, ASSIGN(TOP(stk), id,

attrs))
IS_INBLOCK?'(stk, id) :: if IS_ZNEWSTACK? (stk)
then false
else 7 IS_UNDEFINED? (TOP(stk),
id)
RETRIEVE'(stk, id) :: if IS_ZNEWSTACK? (stk)
then error

else 1 IS_.UNDEFINED?(TOP(stk),id)
then RETRIEVE'(POP(stk), id)
else READ(TOP(stk), id)

The interpretation function ® is defined by:
(a) d(error) = error
(b) ®(NEWSTACK) = error
(c) ®(PUSH(stk, EMPTY)) = if IS_NEWSTACK? (stk)
then INIT
else ENTERBLOCK (d(stk))
(d) ®(PUSH(stk, ASSIGN(arr, id, attrs))) = ADD(®PUSH(stk,
arr)), id, attrs))

Before continuing to refine these operations, i.e.
before supplying representations for types Array and
Stack, let us consider the problem of proving that the
above implementation of type Symboltable is correct.

In the course of such a proof two kinds of invariants
may have to be verified: inherent invariants and repre-
sentation invariants. The inherent invariants represent
those invariant relationships that must be maintained
by any representation of the type. They correspond to
the axioms used in the specification of the type.. A
representation invariant, on the other hand, is peculiar
to a particular representation of a type.

The basic procedure followed in verifying the inher-
ent invariants is to take each axiom for type Symbolta-
ble and replace all instances of each function appearing
in the axiomatization with its interpretation. Then, by
using the axiomatizations of the operations used in
constructing the representations, it is shown that the
left-hand side of each axiom is equivalent to the right-
hand side of that axiom. That is to say, they represent
the same abstract value.

What must be shown therefore is that for every
relationf’'(x*) = z (where x* is a list, possibly empty, of
arguments), derived from the axiomatization of type
Symboltable,

(a) if the range of f is the type being defined (ie.,

Symboltable), ®(f'(x*)) = ®(z) for all legal assign-

ments to the free variables of x* and z, or
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(b) 1t the range of f 1s a type other than that being
defined, f'(x*) = z for all legal assignments to the
free variables of x* and z.

To show this, we have at our disposal a proof system

consisting of the axioms and rules of inference of our

programming language plus the axioms defining the
abstract types used in the representation.

The proof depends upon the assumption that ob-
jects of type Symboltable are created and manipulated
only via the operations defined in the specification of
that type. (The use of classes as described in Palme (18]
makes this assumption relatively easy to verify.) All
that need be shown is that INIT’ establishes the invar-
iants and that if on entry to an operation all invariants
hold for all objects of type Symboltable to be manipu-
lated by that operation, then all invariants on those
objects hold upon completion of that operation. More
complete discussions of how this may be done are
contained in Guttag [8], Spitzen [21], and Wegbreit
[23] (where it is called generator induction).

To verify that the implementation is consistent with
Axioms 1 through 8 is quite straightforward. (It has, in
fact, been donc completely mechanically by David
Musser [17] using the program verification system at
the University of Southern California Information Sci-
ences Institute [7]. Thus the proofs will not be pre-
sented here. Axiom 9, on the other hand, presents
some problems that make the portion of the proof
pertinent to that axiom worth examining.

The proof that the implementation satisfies Axiom
9 is based upon an assumption about the environment
in which the operations of the type are to be used. In
effect, the assumption asserts that an identifier is never
added to an empty symbol table, i.e. a scope must have

been established (on a more concrete level, an array -

must have been pushed onto the stack) before an iden-
tifier can be added. The concrete manifestation of this
assumption is formally expressed:

Assumption 1. For any term, ADD’(symtab, id,
attrs), IS NEWSTACK? (symtab) = false.

The validity of the above assumption can be assured
by adding to the implementation of ADD’ a check for
this condition and having it execute an ENTER-
BLOCK' if necessary. This would make it possible to
construct a completely self-contained proof of the cor-
rectness of the representation. In most cases, however,
it would also introduce needless inefficiency. The com-
piler must somewhere check for mismatched (i.c. ex-
tra) “end” statements. Any check in ADD’ would
therefore be redundant.

This observation leads to a notion of conditional
correctness, i.e. the representation of the abstract type
is correct if the enclosing program obeys certain con-
straints. In practice, this is often an extremely useful
notion of correctness, especially if the constraint is
easily checked. If, on the other hand, the environment
in which the abstract type is to be used is unknown (e.g.
if the type is to be included in a library), this is probably
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unacceptably dangerous. Given the above assumption,
the verification of Axiom 9 is straightforward buf
lengthy and will therefore not be presented here. I
does appear in Guttag [8].

Now we know that, given implementations of types
Stack and Array that are consistent with their specifica-
tions, the implementation of type Symboltable is “cor-
rect.” Assuming PL/I-like based variables, pointers,
and structures, the implementation of type Stack is
trivial. The basic scheme is to represent a stack as a
pointer to a list of structures of the form:

1. stack elem based,
2. val Array,
2. prev pointer.

The operations may be implemented as follows (PL/I
keywords have been boldfaced):

NEWSTACK' :: null
PUSH'(symtab, newblock) ::
procedure(symtab: pointer, newblock: Array)returns(pointer)
declare elem_ptr pointer
allocate(stack_elem) set(elem_ptr)
elem_ptr — prev := symtab
elem_ptr — val := newblock
return(elem_ptr)
end
POP’(symtab) ::
procedure(symtab: pointer) reterns(pointer)
if symtab = null
then return(error)
else return(symtab — prev)
end
TOP'(symtab) ::
procedure(symtab: pointer) returms(Array)
if symtab = null
then return(error)
else return(symtab — val)
end
IS_NEWSTACK?'(symtab) :: symtab = null
REPLACE'(symtab, newblock) ::
procedure(symtab: pointer, newblock: Array) returns(pointer)
if symtab = pull
then return(error)
else symtab — val := newblock
return(symtab)
end

¢ is defined by the mapping:

®(symtab) :: if symtab = null
then NEWSTACK
else PUSH(®(symtab — prev), symtab — val)}

The implementation chosen for type Array is a bit
more complicated. The basic scheme is to represent an
array as a PL/I-like array, hash_tab, of n pointers to
lists of structures of the form: )

1. entry based,
2. id Identifier

2. attributes Attributelist,
2. next pointer.

The correct element of hash_tab is selected by perform-
ing a hash on values of type Identifier. Therefore, in
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addition to the operations used in the code above, the
implementation of type Array uses an operation

HASH :Identifier — {1, 2, .. ., n}

which is assumed to be defined in the type Identifier
specification. The “code” implementing type Array is:

declare hash_tab(n) pointer based

EMPTY' =
procedure returns(pointer)
declare new_hash_tab pointer
altocate (hash_tab) set (new_hash_tab)
doi:=1ton
new_hash_tab — hash_tab(i) := null
end
retarn(new_hash_tab)
end
ASSIGN'(arr, indx, atr) ::
procedure(arr: pointer, indx: Identifier, atr: Attributelist)
returns(pointer)
declare new_entry pointer
allocate(entry) set (new_entry)
new_entry — id = indx
new_entry — attributes := atr
new_entry — next = arr — hash_tab(HASH(indx))
arr — hash_tab(HASH(indx)) := new_entry
return(arr)
end
READ’(arr, indx) ::
procedure(arr: pointer, indx: Identifier) returns(Attributelist)
declare bucket_ptr pointer
bucket_ptr := arr — hash_tab(H ASH(indx))
do while(bucket_ptr + noll & - IS_SAME?(bucket_ptr — id,
indx))
bucket_ptr := bucket_ptr — next
end
if bucket_ptr = null
then return(error)
else return (bucket_ptr — attributes)
end
IS_UNDEFINED?'(arr, indx) ::
procedure(arr: pointer, indx: Identifier) returns(Boolean)
declare bucket_ptr pointer
bucket_ptr := arr — hash_tab(HASH(indx))
do while (bucket_ptr # null & 7 IS_SAME? (bucket_ptr — id,

indx))
bucket_ptr := bucket_ptr — next
end
return (bucket_ptr = null)

end

As one might expect, ® is a bit more complex for
this representation. It is defined by using two interme-
diate functions: 1 to construct a union over all the
entries in the hash table, and ®2 to construct a union
over the elements of an individual bucket.

(a) ®(hash_tab_ptr) = ®1(hash_tab_ptr, EMPTY, 1)
(b) ®1(hash_tab_ptr, arr, i) =
ifi>n
then arr
else ®1(hash_tab_ptr, ®2(hash_tab_ptr — hash_tab(i), arr),
i+ 1)
{c) ®2(bucket_ptr.arr) =
if bucket_ptr = null
then arr
else ASSIGN(d2(bucket_ptr ~ next, arr), bucket_ptr— id,
bucket_ptr — attributes)
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The design of the symbol table subsystem of the
compiler is now essentially complete. Given implemen-
tations of types Identifier and Attributelist and some
obvious syntactic transformations, the above code
could be compiled by a PL./I compiler. Before doing so,
however, it would be wise to prove that the implemen-
tations of types Stack and Array are consistent with the
specifications of those types. While such a proof would
involve substantial issues related to the general pro-
gram verification problem (e.g. vis a vis the integrity of
the pointers and the question of modifying shared data
structures), it would not shed further light on the role
of abstract data types in program verification and is not
presented in these pages.

The ease with which algebraic specifications can be
adapted for different applications is one of the major
strengths of the technique. Because the relationships
among the various operations appear explicitly, the
process of deciding which axioms must be altered to
effect a change is straightforward. Let us consider a
rather substantial change in the language to be com-
piled. Assume that the language permits the inherit-
ance of global variables only if they appear in a “knows
list,” which lists, at block entry, all nonlocal variables
to be used within the block [6]. The symbol table
operations in a compiler for such a language would be
much like those already discussed. The only difference
visible to parts of the compiler other than the symbol
table module would be in the ENTERBLOCK opera-
tion: It would have to be altered to include an argument
of abstract type Knowlist. Within the specification of
type Symboltable, all relations, and only those rela-
tions, that explicitly deal with the ENTERBLOCK
operation would have to be altered. An appropriate set
of axioms would be:

IS_INBLOCK?(ENTERBLOCK( (symtab, klist), id) = false
LEAVEBLOCK(ENTERBLOCK (symtab, klist)) = symtab
RETRIEVE(ENTERBLOCK(symtab, klist), id) =
if IS_IN?(klist, id)
then RETRIEVE(symtab, id)
else error

Note that the above relations are not well defined.
The undefined symbol IS_IN?, an operation of the
abstract type Knowlist, appears in the third axiom. The
solution to this problem is simply to add another level
to the specification by supplying an algebraic specifica-
tion of the abstract type Knowlist. An appropriate set
of operations might be:

CREATE: — Knowlist
APPEND: Knowlist x Identifier - Knowlist
IS_IN?: Knowlist x Identifier — Boolean

These operations could then be precisely defined by the
following axioms:

IS_IN?(CREATE) = false

IS_IN?(APPEND(Kklist, id), idl) = if IS_SAME?(id, idl)
then true
else IS_IN?(klist, idl)
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The implementation of abstract type Knowlist is
trivial. The changes necessary to adapt the previously
presented implementation of abstract type Symboltable
would be more substantial. The kind of changes neces-
sary can, however, be inferred from the changes made
to the axiomatization.

§. Conclusions

- We have not yet applied the techniques discussed in
this paper to realistically large software projects.
Nevertheless, there is reason to believe that the tech-
niques demonstrated will “scale up.” The size and
complexity of a specification at any level of abstraction
are essentially independent of both the size and com-
plexity of the system being described and of the amount
of mechanism ultimately used in the implementation.
The independence springs in large measure from the
ability to separate the precise meaning of a complex
abstract data type from the details involved in its imple-
mentation. It is the ability to be precise without being
detailed that encourages the belief that the approach
outlined here can be applied even to “very large”
systems can and perhaps reduce systems that were
formerly “very large” (i.e. incomprehensible) to more
manageable proportions.

Abstract types may thus play a vital role in the
formulation and presentation of precise specifications
for software. Many complex systems can be viewed as
instances of an abstract type. A database management
system, for example, might be completely character-
ized by an algebraic specification of the various opera-
tions available to users. For those systems that are not
easily totally characterized in terms of algebraic rela-
tions, the use of algebraic type specifications to abstract
various complex subsystems may still make a substan-
tial contribution to the design process. The process of
functional decomposition requires some means for
specifying the communication among the various func-
tions —data often fulfills this need. The use of algebraic
specifications to provide abstract definitions of the op-
erations used to establish communication among the
various functions may thus play a significant role in
simplifying the process of functional abstraction.

The extensive use of algebraic specifications of ab-
stract types may also lead to better-designed data struc-
tures. The premature choice of a storage structure and
set of access routines is a common cause of inefficien-
cies in software. Because they serve as the main means
of communication among the various components of
many systems, the data structures are often the first
components designed. Unfortunately, the information
required to make an intelligent choice among the var-
ious options is often not available at this stage of the
design process. The designer may, for example, have
poor insight into the relative frequency of the various
operations to be performed on a data structure. By
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providing a representation-free, yet precise, descrip-
tion of the operations on a data structure, algebraic
type definitions enable the designer to delay the mo-
ment at which a storage structure must be designed and
frozen.

The second area in which we expect the algebraic
specification of abstract types to have a substantial
impact is on proofs of program properties. For verifica-
tions of programs that use abstract types, the algebraic
specification of the types used provides a set of power-
ful rules of inference that can be used to demonstrate
the consistency of the program and its specification.
That is to say, the presence of axiomatic definitions of
the abstract types provides a mechanism for proving a
program to be consistent with its specifications, pro-
vided that the implementations of the abstract opera-
tions that it uses are consistent with their specifications.
Thus a technique for factoring the proof is provided,
for the algebraic type definitions serve as the specifica-
tion of intent at a lower level of abstraction. For proofs
of the correctness of representations of abstract types,
the algebraic specification provides exactly those asser-
tions that must be verified. The value of having such a
set of assertions available should be apparent to any
one who has attempted to construct, a posteriori, asser-
tions appropriate to a correctness proof for a program.
A detailed discussion of the use of algebraic specifica-
tions in a semiautomatic program verification system is
contained in Guttag [10].

Given suitable restrictions on the form that axioma-
tizations may take, a system in which implementations
and algebraic specifications of abstract types are inter-
changeable can be constructed. In the absence of an
implementation, the operations of the algebra may be
interpreted symbolically. Thus, except for a significant )
loss in efficiency, the lack of an implementation can be
made completely transparent to the user. Such a system
should prove valuable as a vehicle for facilitating the
testing of software.

The ability to use specifications for testing is closely
related to the policy of restricted information flow
advocated in Parnas [20]. If a programmer is supplied
with algebraic definitions of the abstract operations
available to him and forced to write and test his module
with only that information available to him, he is de-
nied the opportunity to rely intentionally or acciden-
tally upon information that should not be relied upon.
This not only serves to localize the effect of implemen-
tation errors, but also to increase the ease with which
one implementation may be replaced by another. This
should, in general, serve to limit the danger of choosing
a poor representation and becoming inextricably
locked into it.

Before ending this paper, it seems fitting 10 mention
some of the failings and problems associated with the
work described. The specification technique presented
here requires that all operations be specified as func-
tions, i.e. as mappings from a cross product of values to
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a single value. Most programs, on the other hand, are
laden with procedures that return several values (via
parameters) or no value at all. (The latter kind of
procedure is invoked purely for its side effects.) The
inability to specify such procedures is a serious prob-
lem, but one that we believe can be solved with only
minor changes to the specification techniques [10].

The value of abstraction in general and abstraction
of data types in particular has been stressed throughout
this paper. Nevertheless, the process is not without its
dangers. It is all too easy to create abstractions that
ignore crucial distinctions or attributes. The specifica-
tion technique presented here, for example, provides
no mechanism for specifying performance constraints
and thus encourages one to ignore distinctions based on
such criteria. In some environments, such considera-
tions are crucial, and to abstract them out can be
disastrous.

Another problem with algebraic specifications is
that they supply little direction to implementors. Only
experience will tell how easy it is to go from an alge-
braic specification to an implementation. It is clear,
however, that the transition is less easy than from an
operational specification.

Our most important reservation pertains to the ease
with which algebraic specifications can be constructed
and read. They should present no problem to those
with formal training in computer science. At present,
however, most people involved in the production of
software have no such training. The extent to which the
techniques described in this paper are generally appli-
cable is thus somewhat open to conjecture.
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