
Wright State University
Department of Computer Science and Engineering

CS 784 Spring 2011 Prasad

Final Exam (35 pts)

1 Making Primitive Interpreter General and Robust (5

+ 5 pts)

Consider the interpreter given in the file 3-5.scm. In this exercise, we generalize one primitive
operation, and make another operation more robust by checking for potential errors.

1. Does the call (run "+(1,2,3,4)") return an error? If so, explain the problem. If not,
what value does the call (run "+(1,2,3,4)") return?

Modify the interpreter so that the outcome of running variable-arity calls such as
(run "+(1,2,3,4)") is the same as that in Scheme such as for (+ 1 2 3 4).

2. What is the value of (run "sub1(12,3,4)") returned by the code in 3-5.scm?

Modify the interpreter so that it behaves correctly for a single numeric argument, but
returns 0 otherwise (that is, whenever the number of arguments is different from 1, or
the argument is of incompatible type).

2 Adding a New Construct to the Language ([3 + 5] +

2 pts)

Consider the interpreter given in the file 3-5.scm. In this exercise, we explore adding and-
construct to the interpreter with the following syntax and semantics described only informally.

and (exp1 exp2 ... expn)

The and-construct begins with the keyword “and” and consists of parenthesis delimited,
blanks separated, zero or more expressions. The meaning of this construct is obtained by
evaluating each expression for a boolean value and then returning true iff all the expressions
return true.

Discuss, and then make, all necessary changes to the interpreter to extend it with and-
construct. Specifically, clearly locate the lines you are deleting/modifying/inserting using the
line numbers given. Eventually, your modified interpreter should run programs such as

(run "let x = 0 y = 1 in and (x 3 y)")

What additional test cases would you consider to improve faith in the correctness of your
code?

1

3 Calculating using Axiomatic Semantics (3 + 3 pts)

Determine the following weakest preconditions. (Assume that all variables are of integer
type.)

wp({if i > j then i := i - j else j := i;}, i = j) = ?

wp({while i > 0 do i := i - j;}, (i = 0) /\ (j = 2)) = ?

4 ADT Specification (3 + 5 + 1 pts)

A sequence is an ordered collection of values of the same type, possibly with duplicates. You
are required to specify the generic ADT Seq that supports the following operations: empty,
insert, isEmpty, length, and drop. Informally,

• empty: the empty sequence.

• insert: Takes a seqeunce and a value as input, and yields the sequence resulting from
introducing one occurrence of the value at the beginning of the sequence.

• isEmpty: Takes a sequence as input, and checks to see if it is empty.

• length: Takes a sequence as input, and yields the number of values it contains.

• drop: Takes a sequence and a number as input, and yields the sequence resulting from
eliminating the given number of values from the beginning of the sequence. (That is,
drop([],5) = [], drop([1,11,2,22,3,33],4) = [3,33], drop([a,b,c],1) = [b,c], etc.)

1. Specify the signatures and classify the aforementioned operations on ADT Seq.

2. Give an algebraic specification of the semantics of ADT Seq.

3. Verify your specfication by tracing the simplification of the term:

drop(insert(insert(insert(empty,3),4),5), 2).

2

