Data-Flow Analysis

Adapted From Lectures by
Prof. Saman Amarasinghe (MIT)

Outline

• Data-flow analysis
• Available expressions
• Algorithm for calculating available expressions
• Bit sets
• Formulating a data-flow analysis problem
• DU chains
• SSA form

Data-Flow Analysis

• Local Analysis
 – Analyze the effect of each instruction
 – Compose effects of instructions to derive information from beginning of basic block to each instruction
• Data-Flow Analysis
 – Iteratively propagate basic block information over the control-flow graph until no changes
 – Calculate the final value at the beginning of the basic block
• Local Propagation
 – Propagate the information from the beginning of the basic block to each instruction

Data-Flow Analysis

• Overview of data-flow analysis
• Available expressions
• Algorithm for calculating available expressions
• Bit sets
• Formulating a data-flow analysis problem
• DU chains
• SSA form

Example: Available Expression

• An expression is available if and only if
 – All paths of execution reaching the current point pass through the point where the expression was defined
 – No variable used in the expression was modified between the definition point and the current point

Example: Available Expression
Is the Expression Available?

YES!

Is the Expression Available?

YES!

Is the Expression Available?

NO!

Is the Expression Available?

NO!

Is the Expression Available?

NO!

Is the Expression Available?

YES!

Is the Expression Available?

YES!

Is the Expression Available?

NO!

Is the Expression Available?

YES!
Is the Expression Available?

\[a = b + c \]
\[d = e + f \]
\[f = a + c \]

Use of Available Expressions

\[a = b + c \]
\[d = e + f \]
\[f = a + c \]

\[g = a + c \]
\[j = a + b + c + d \]
\[b = a + d \]
\[h = c + f \]

Use of Available Expressions

\[a = b + c \]
\[d = e + f \]
\[f = a + c \]

\[g = f \]
\[j = f + b + d \]
\[b = a + d \]
\[h = c + f \]
Use of Available Expressions

- $a = b + c$
- $d = e + f$
- $f = a + c$
- $g = f$
- $j = f + b + d$
- $b = a + d$
- $h = c + f$

Outline

- Overview of data-flow analysis
- Available expressions
- Algorithm for calculating available expressions
- Bit sets
- Formulating a data-flow analysis problem
- DU chains
- SSA form

Example: Available Expression

- Assign a number to each expression

Gen and Kill sets

- **Gen set**
 - If the current basic block (or instruction) creates the definition, it is in the gen set
 - The entry should be in the output no matter what
- **Kill set**
 - If the current basic block (or instruction) redefines a variable in the expression, it is in the kill set
 - Expression is not valid after that

Algorithm for Available Expression

- Assign a number to each expression
- Calculate gen and kill sets for each instruction

Gen and Kill sets
Gen and Kill sets

1. \(a = b + c \)
 - gen = \{ \(b + c \) \}
 - kill = \{ any expr with a \}

2. \(d = e + f \)
 - gen = \{ \(e + f \) \}
 - kill = \{ any expr with d \}

3. \(f = a + c \)
 - gen = \{ \(a + c \) \}
 - kill = \{ any expr with f \}

4. \(g = a + c \)

5. \(b = a + d \)

6. \(h = c + f \)

7. \(j = a + b + c + d \)

Algorithm for Available Expression

- Assign a number to each expression
- Calculate gen and kill sets for each instruction
- Calculate aggregate gen and kill sets for each basic block

Aggregate Gen set

- The gen set in the current expression should be in the OutGEN set

\[\text{OutGEN} = \text{gen} \]
Aggregate Gen set

- The gen set in the current expression should be in the OutGEN set.
- Any expression in the InGEN set that is not killed should be in the OutGEN set.

OutGEN = gen ∪ (InGEN - kill)
aggregate gen set

\[a = b + c \]

\[\text{gen} = \{1\} \]
\[\text{kill} = \{3, 4, 5, 7\} \]
\[\text{InGEN} = \{1\} \]

\[e + f \]
\[\text{gen} = \{2\} \]
\[\text{kill} = \{3, 7\} \]
\[\text{OutGEN} = \{2\} \cup \left(\{1\} \cdot \{5, 7\}\right) \]

\[a + c \]
\[\text{gen} = \{3\} \]
\[\text{kill} = \{2, 6\} \]
\[\text{OutGEN} = \text{gen} \cup \left(\text{InGEN} - \text{kill}\right) \]
Aggregate Kill set

\[a = b + c \]
\[\text{gen} = \{ 1 \} \]
\[\text{kill} = \{ 3, 4, 5, 7 \} \]

OutKILL set

OutKILL = kill

Aggregate Kill set

- The kill set in the current expression should be in the OutKILL set
- Any set in the InKILL should be in OutKILL

OutKILL = kill \cup \text{InKILL}
Aggregate Kill set

\[\text{InKILL} = \{ \} \]
\[a = b + c \]
\[\text{OutKILL} = \{ 3, 4, 5, 7 \} \]
\[d = e + f \]
\[\text{InKILL} = \{ 3, 4, 5, 7 \} \]
\[f = a + c \]
\[\text{gen} = \{ 1 \} \]
\[\text{kill} = \{ 3, 4, 5, 7 \} \]
\[\text{OutKILL} = \text{kill} \cup \text{InKILL} \]

\[\text{gen} = \{ 2 \} \]
\[\text{kill} = \{ 3, 7 \} \]
\[\text{OutKILL} = \{ 3, 7 \} \cup \{ 3, 4, 5, 7 \} \]

\[\text{gen} = \{ 3 \} \]
\[\text{kill} = \{ 2, 6 \} \]
Algorithm for Available Expression

- Assign a number to each expression
- Calculate gen and kill sets for each instruction
- Calculate aggregate gen and kill sets for each basic block
- Initialize available set at each basic block to be the entire set

Iteratively propagate available expression set over the CFG
Propagate available expression set

- If the expression is generated (in the gen set) then it is available at the end
 - should be in the OUT set

\[\text{OUT} = \text{gen} \]

Aggregate Gen and Kill sets

\[\text{IN} = \bigcap \text{OUT} \]
\[\text{OUT} = \text{gen} \cup (\text{IN} - \text{kill}) \]

IN = \{ 1, 2, 3, 4, 5, 6, 7 \}
\[\text{Gen} = \{ 1, 3 \} \]
\[\text{Kill} = \{ 2, 3, 4, 5, 6, 7 \} \]
\[\text{IN} = \bigcap \text{OUT} \]
\[\text{OUT} = \{ 1, 2, 3, 4, 5, 6, 7 \} \]

\[\text{IN} = \{ \} \]
\[\text{Gen} = \{ 1, 3 \} \]
\[\text{Kill} = \{ 2, 3, 4, 5, 6, 7 \} \]
\[\text{IN} = \bigcap \text{OUT} \]
\[\text{OUT} = \{ 1, 2, 3, 4, 5, 6, 7 \} \]
Aggregate Gen and Kill sets

\[a = b + c \]
\[d = e + f \]
\[f = a + c \]
\[g = a + c \]
\[j = a + b + c + d \]
\[b = a + d \]
\[h = c + f \]

\[\text{Gen} = \{ 1, 3 \} \]
\[\text{Kill} = \{ 2, 3, 4, 5, 6, 7 \} \]
\[\text{Gen} = \{ 4 \} \]
\[\text{Kill} = \{ \} \]
\[\text{Gen} = \{ 5, 6 \} \]
\[\text{Kill} = \{ 1, 7 \} \]
\[\text{Gen} = \{ 7 \} \]
\[\text{Kill} = \{ \} \]

\[\text{IN} = \{ 1, 2, 3, 4, 5, 6, 7 \} \]
\[\text{OUT} = \{ 1, 3 \} \]
\[\text{IN} = \{ 2, 3, 4, 5, 6, 7 \} \]
\[\text{OUT} = \{ 1, 2, 3, 4, 5, 6, 7 \} \]

\[\text{IN} = \{ 1, 3, 4 \} \]
\[\text{OUT} = \{ 1, 2, 3, 4, 5, 6, 7 \} \]
Aggregate Gen and Kill sets

IN = \cap OUT
OUT = gen \cup (IN - kill)

IN = \{ 1, 3 \}
OUT = \{ 1, 2, 3, 4, 5, 6, 7 \}

\text{IN} = \{ 1, 3 \}
\text{OUT} = \{ 1, 2, 3, 4, 5, 6, 7 \}

\text{IN} = \{ 1, 3 \}
\text{OUT} = \{ 1, 2, 3, 4, 5, 6, 7 \}

\text{IN} = \{ 1, 3 \}
\text{OUT} = \{ 1, 2, 3, 4, 5, 6, 7 \}

\text{IN} = \{ 1, 3 \}
\text{OUT} = \{ 1, 2, 3, 4, 5, 6, 7 \}

\text{IN} = \{ 1, 3 \}
\text{OUT} = \{ 1, 2, 3, 4, 5, 6, 7 \}

\text{IN} = \{ 1, 3 \}
\text{OUT} = \{ 1, 2, 3, 4, 5, 6, 7 \}
Algorithm for Available Expression

- Assign a number to each expression
- Calculate gen and kill sets for each instruction
- Calculate aggregate gen and kill sets for each basic block
- Initialize available set at each basic block to be the entire set
- Iteratively propagate available expression set over the CFG
- Propagate within the basic block

Propagate within the basic block

- Start with the IN set of available expressions
- Linearly propagate down the basic block
- same as data-flow step
- single pass since no back edges

\[
\text{OUT} = \text{gen} \cup (\text{IN} - \text{kill})
\]

Available Expressions

- \(a = b + c\)
- \(\text{gen} = \{1\}\)
- \(\text{kill} = \{3, 4, 5, 7\}\)

Outline

- Overview of data-flow analysis
- Available expressions
- Algorithm for calculating available expressions
- Bit sets
- Formulating a data-flow analysis problem
- DU chains
- SSA form

Bitsets

- Assign a bit to each element of the set
 - Union \(\Rightarrow\) bit OR
 - Intersection \(\Rightarrow\) bit AND
 - Subtraction \(\Rightarrow\) bit NEGATE and AND
- Fast implementation
 - 32 elements packed to each word
 - AND and OR are single instructions

Kill Set vs. Preserve Set

- Kill Sets
 - \(\text{OUT} = \text{gen} \cup (\text{IN} - \text{kill})\)
 - Using bit vectors: \(\text{OUT} = \text{gen} \lor (\text{IN} - \text{kill})\)
 - Subtraction \(\Rightarrow\) bit NEGATE and AND
 - \(\text{OUT} = \text{gen} \lor (\text{IN} \land \neg \text{kill})\)
- Preserve Sets
 - \(\text{PRSV} = \text{Entire Set} - \text{KILL}\)
 - \(\text{OUT} = \text{gen} \lor (\text{IN} \land \text{prsv})\)
 - \(\text{OUT} = \text{gen} \lor (\text{IN} \land \neg \text{prsv})\)

(Refer to Muchnick book)
Formulating a data-flow analysis problem

- Lattice
 - Abstract quantities over which the analysis will operate
 - Example: sets of available expressions

- Flow functions
 - how each control-flow and computational construct affects the abstract quantities
 - Example: the OUT equation for each statement

Lattice

- A lattice \(L \) consists of
 - a set of values
 - two operations meet (\(\wedge \)) and join (\(\vee \))
 - a top value (1) and a bottom value (\(\perp \))
Lattice

- Example: the lattice for the reaching definition problem when there are only 3 definitions

\[T = \{ \{ d1, d2, d3 \}, \{ d1, d3 \}, \{ d2 \}, \{ \} \} \]

Meet and Join Operations

- Meet and Join forms a closure
 - For all \(a, b \in L \) there exist a unique \(c \) and \(d \in L \) such that
 \[a \land b = c \quad a \lor b = d \]
- Meet and Join are commutative
 - \(a \land b = b \land a \)
 - \(a \lor b = b \lor a \)
- Meet and Join are associative
 - \((a \land b) \land c = b \land (a \land c) \quad (a \lor b) \lor c = b \lor (a \lor c) \)
- There exist a unique top element (\(T \)) and bottom element (\(\bot \)) in \(L \) such that
 \[a \land \bot = \bot \quad a \lor T = T \]
Meet and Join Operations

\{ d_1, d_2 \} \lor \{ d_3 \} = ???

T = \{ d_1, d_2, d_3 \}
\{ d_1, d_3 \}
\{ d_2 \}
\{ d_1, d_2 \} \lor \{ d_3 \} = ???

Meet and Join Operations

• Meet Operation
 – Set Intersection
 – Follow the lines downwards from the two elements in the lattice until they meet at a single unique element

• Join Operation
 – Set Union
 – There is a unique element in the lattice from where there is a downwards path (with no shared segment) to both elements
Partial Order

- Define $a \subseteq b$ if and only if $a \land b = b$
- Properties
 - Reflexive: $a \subseteq a$
 - Antisymmetric: $a \subseteq b$ and $b \subseteq a$ \Rightarrow $a = b$
 - Transitive: $a \subseteq b$ and $b \subseteq c$ \Rightarrow $a \subseteq c$

Lattice Height

- The height of the lattice is the longest ascending chain in it
 - $(T, a, b, c, \ldots, \bot)$

Flow Functions

- Example: $OUT = f(IN)$
- $f: L \rightarrow L$ where L is a lattice
- Properties
 - Monotone: $\forall a,b \in L$ $a \subseteq b$ \Rightarrow $f(a) \subseteq f(b)$
- Fixed Point
 - A fixed point is an element $a \in L$ such that $f(a) = a$

Intuition about Termination

- Data-flow analysis starts assuming most optimistic values (T)
- Each stage applies a flow function
 - $V_{\text{new}} \subseteq V_{\text{prev}}$
 - Moves downwards in the lattice
- Until stable (values don’t change)
 - A fixed point is reached at every basic block
- Lattice has a finite height \Rightarrow should terminate
Outline
• Overview of data-flow analysis
• Available expressions
• Algorithm for calculating available expressions
• Bit sets
• Formulating a data-flow analysis problem
• DU chains
• SSA form

Def-Use and Use-Def Chains
• Def-Use (DU) Chain
 – Connects a definition of each variable to all the possible uses of that variable
• Use-Def (UD) Chain
 – Connects a use of a variable to all the possible definitions of that variable

DU Chain Data-Flow Problem Formulation
• Lattice: The set of definitions
 – Bitvector format: a bit for each definition in the procedure
• Flow direction: Forward Flow
• Flow Functions:
 – gen = \{ b_0 \ldots b_n \mid b_k = 1 \text{ if the } k\text{th definition} \}
 – kill = \{ b_0 \ldots b_n \mid b_k = 1 \text{ if } k\text{th variable is redefined} \}
 – OUT = gen \cup (IN - kill)
 – IN = \bigcup OUT

Formulate the UD Chain Data-Flow Problem
• Lattice:
 – Bitvector format:
• Flow direction: Forward/Backward Flow
• Flow Functions:
 – gen = \{ b_0 \ldots b_n \mid b_k = 1 \}
 – kill = \{ b_0 \ldots b_n \mid b_k = 1 \}
 – OUT =
 – IN =

DU Example

DU Example
```
DU Example
entry
i = 1
j = 2

j = j * 2
k = true
i = i + 1

print j
i = i + 1

exit

i < n

gen = {1, 2, 3}
kill = {4, 5, 6, 7}

OUT = {1, 2, 3}
IN = {1, 2, 3}
```

DU Example

entry

OUT = \{ \}

k = false
i = 1
j = 2
j = j * 2
k = true
i = i + 1
print j
i = i + 1

exit

i < n

gen = \{ 1, 2, 3 \}
kill = \{ 4, 5, 6, 7 \}
gen = \{ 4, 5, 6 \}
kill = \{ 1, 2, 3, 7 \}
gen = \{ \}
kill = \{ \}
gen = \{ \}
kill = \{ \}
gen = \{ 7 \}
kill = \{ 2, 6 \}

OUT = \{ 1, 2, 3 \}
IN = \{ 1, 2, 3, 4, 5, 6 \}
OUT = IN = \{ \}
OUT = IN = \{ 1, 2, 3 \}
OUT = IN = \{ 1, 2, 3 \}
OUT = IN = \{ 4, 5, 6 \} OUT = \{ 1, 2, 3 \} OUT = \{ 1, 3, 7 \}
IN = \{ 1, 2, 3, 7 \}
DU Example

```plaintext
k = false
i = 1
j = 2

j = j * 2
k = true
i = i + 1

print j
```

DU Chains

- At each use of a variable, points to all the possible definitions
 - Very useful information
 - Used in many optimizations

- Incorporate this information in the representation
 - SSA Form

Outline

- Overview of control-flow analysis
- Available expressions
- Algorithm for calculating available expressions
- Bit sets
- Formulating a data-flow analysis problem
- DU chains
- SSA form

Static Single Assignment (SSA) Form

- Each definition has a unique variable name
 - Original name + a version number

- Each use refers to a definition by name

- What about multiple possible definitions?
 - Add special merge nodes so that there can be only a single definition (Φ functions)
Static Single Assignment (SSA) Form

a = 1
b = a + 2
c = a + b
a = a + 1
d = a + b

Static Single Assignment (SSA) Form

a = 1
c = a + 2
b = 1
j = j + 2
k = true
i = i + 1
print j
exit

i < n

DU Example

copy
k = false
i = 1
j = 2

j = j * 2
k = true
i = i + 1
print j
exit

i < n