Register Allocation

Adapted from Lectures by Prof. Alex Aiken and George Necula (UCB)

Lecture Outline

- Memory Hierarchy Management
- Register Allocation
 - Register interference graph
 - Graph coloring heuristics
 - Spilling
- Cache Management

The Memory Hierarchy

Registers 1 cycle 256-8000 bytes
Cache 3 cycles 256k-1M
Main memory 20-100 cycles 32M-1G
Disk 0.5-5M cycles 4G-1T

Managing the Memory Hierarchy

- Programs are written as if there are only two kinds of memory: main memory and disk
- Programmer is responsible for moving data from disk to memory (e.g., file I/O)
- Hardware, under OS control, is responsible for moving data between memory and caches
- Compiler is responsible for moving data between memory and registers

Current Trends

- Cache and register sizes are growing slowly
- Processor speed improves faster than memory speed and disk speed
 - The cost of a cache miss is growing
 - The widening gap is bridged with more caches
- It is very important to:
 - Manage registers properly
 - Manage caches properly
- Compilers are good at managing registers

The Register Allocation Problem

- Recall that intermediate code uses as many temporaries as necessary
 - This complicates final translation to assembly
 - But simplifies code generation and optimization
 - Typical intermediate code uses too many temporaries
- The register allocation problem:
 - Rewrite the intermediate code to use fewer temporaries than there are machine registers
 - Method: assign more temporaries to a register
 - But without changing the program behavior
History

- Register allocation is as old as intermediate code.
- Register allocation was used in the original FORTRAN compiler in the '50s.
 - Very crude algorithms.
- A breakthrough was not achieved until 1980 when Chaitin invented a register allocation scheme based on graph coloring.
 - Relatively simple, global and works well in practice.

An Example

- Consider the program:

 \[
 \begin{align*}
 a & := c + d \\
 e & := a + b \\
 f & := e - 1
 \end{align*}
 \]

 - with the assumption that a and e die after use.
- Temporary a can be "reused" after e := a + b.
- Same with temporary e.
- Can allocate a, e, and f all to one register (r_1):

 \[
 \begin{align*}
 r_1 & := r_1 + r_2 \\
 r_1 & := r_1 + r_4 \\
 r_1 & := r_1 - 1
 \end{align*}
 \]

Basic Register Allocation Idea

- The value in a dead temporary is not needed for the rest of the computation.
 - A dead temporary can be reused.
- Basic rule:

 - Temporaries t_1 and t_2 can share the same register if at any point in the program at most one of t_1 or t_2 is live!

Algorithm: Part I

- Compute live variables for each point:

 \[
 \begin{align*}
 a & := b + c \\
 d & := -a \\
 e & := d + f \\
 f & := 2 * e \\
 b & := d + e \\
 e & := e - 1 \\
 b & := f + c
 \end{align*}
 \]

The Register Interference Graph

- Two temporaries that are live simultaneously cannot be allocated in the same register.
- We construct an undirected graph:
 - A node for each temporary.
 - An edge between t_1 and t_2 if they are live simultaneously at some point in the program.
- This is the register interference graph (RIG):
 - Two temporaries can be allocated to the same register if there is no edge connecting them.

Register Interference Graph, Example

- For our example:

 - E.g., b and c cannot be in the same register.
 - E.g., b and d can be in the same register.
Register Interference Graph. Properties.
- It extracts exactly the information needed to characterize legal register assignments
- It gives a global (i.e., over the entire flow graph) picture of the register requirements
- After RIG construction the register allocation algorithm is architecture independent

Graph Coloring. Definitions.
- A coloring of a graph is an assignment of colors to nodes, such that nodes connected by an edge have different colors
- A graph is k-colorable if it has a coloring with k colors

Register Allocation Through Graph Coloring
- In our problem, colors = registers
 - We need to assign colors (registers) to graph nodes (temporaries)
- Let k = number of machine registers
- If the RIG is k-colorable then there is a register assignment that uses no more than k registers

Graph Coloring. Example.
- Consider the example RIG
- There is no coloring with less than 4 colors
- There are 4-colorings of this graph

Graph Coloring. Example.
- Under this coloring the code becomes:

Computing Graph Colorings
- The remaining problem is to compute a coloring for the interference graph
- But:
 1. This problem is very hard (NP-hard). No efficient algorithms are known.
 2. A coloring might not exist for a given number or registers
- The solution to (1) is to use heuristics
- We'll consider later the other problem
Graph Coloring Heuristic

• Observation:
 - Pick a node \(t \) with fewer than \(k \) neighbors in RIG
 - Eliminate \(t \) and its edges from RIG
 - If the resulting graph has a \(k \)-coloring then so does the original graph

• Why:
 - Let \(c_1, \ldots, c_n \) be the colors assigned to the neighbors of \(t \) in the reduced graph
 - Since \(n < k \) we can pick some color for \(t \) that is different from those of its neighbors

Graph Coloring Heuristic

• The following works well in practice:
 - Pick a node \(t \) with fewer than \(k \) neighbors
 - Put \(t \) on a stack and remove it from the RIG
 - Repeat until the graph has one node

 - Then start assigning colors to nodes on the stack (starting with the last node added)
 - At each step pick a color different from those assigned to already colored neighbors

Graph Coloring Example (1)

• Start with the RIG and with \(k = 4 \):

 \[
 \begin{array}{c}
 \text{Stack: } \{\}
 \\
 \end{array}
 \]

 - Remove a and then d

Graph Coloring Example (2)

• Now all nodes have fewer than 4 neighbors and can be removed: c, b, e, f

 \[
 \begin{array}{c}
 \text{Stack: } \{d, a\}
 \\
 \end{array}
 \]

Graph Coloring Example (2)

• Start assigning colors to: f, e, b, c, d, a

 \[
 \begin{array}{c}
 r_1 \quad r_2 \quad r_3 \quad r_4
 \\
 f \quad b \quad c \quad d
 \\
 \end{array}
 \]

What if the Heuristic Fails?

• What if during simplification we get to a state where all nodes have \(k \) or more neighbors?

 • Example: try to find a 3-coloring of the RIG:
What if the Heuristic Fails?

- Remove a and get stuck (as shown below)
- Pick a node as a candidate for spilling
 - A spilled temporary "lives" in memory
- Assume that f is picked as a candidate

What if the Heuristic Fails?

- Remove f and continue the simplification
 - Simplification now succeeds: b, d, e, c

What if the Heuristic Fails?

- On the assignment phase we get to the point when we have to assign a color to f
- We hope that among the 4 neighbors of f we use less than 3 colors ⇒ optimistic coloring

Spilling

- Since optimistic coloring failed we must spill temporary f
- We must allocate a memory location as the home of f
 - Typically this is in the current stack frame
 - Call this address fa
- Before each operation that uses f, insert f := load fa
- After each operation that defines f, insert store f, fa

Spilling Example

- This is the new code after spilling f

Recomputing Liveness Information

- The new liveness information after spilling:
Recomputing Liveness Information

- The new liveness information is almost as before
- \(f \) is live only
 - Between a \(f := \text{load } fa \) and the next instruction
 - Between a \(\text{store } f, fa \) and the preceding instr.
- Spilling reduces the live range of \(f \)
- And thus reduces its interferences
- Which result in fewer neighbors in RIG for \(f \)

Recompute RIG After Spilling

- The only changes are in removing some of the edges of the spilled node
- In our case \(f \) still interferes only with \(c \) and \(d \)
- And the resulting RIG is 3-colorable

Spilling (Cont.)

- Additional spills might be required before a coloring is found
- The tricky part is deciding what to spill
- Possible heuristics:
 - Spill temporaries with most conflicts
 - Spill temporaries with few definitions and uses
 - Avoid spilling in inner loops
- Any heuristic is correct

Caches

- Compilers are very good at managing registers
 - Much better than a programmer could be
- Compilers are not good at managing caches
 - This problem is still left to programmers
 - It is still an open question whether a compiler can do anything general to improve performance
- Compilers can, and a few do, perform some simple cache optimization

Cache Optimization

- Consider the loop
 \[
 \text{for}(j = 1; j < 10; j++) \\
 \text{for}(i = 1; i < 1000; i++) \\
 a[i] *= b[i]
 \]
 - This program has a terrible cache performance
 - Why?

Cache Optimization (Cont.)

- Consider the program:
 \[
 \text{for}(i = 1; i < 1000; i++) \\
 \text{for}(j = 1; j < 10; j++) \\
 a[i] *= b[i]
 \]
 - Computes the same thing
 - But with much better cache behavior
 - Might actually be more than 10x faster
- A compiler can perform this optimization
 - called loop interchange
Conclusions

• Register allocation is a "must have" optimization in most compilers:
 - Because intermediate code uses too many temporaries
 - Because it makes a big difference in performance
• Graph coloring is a powerful register allocation scheme
• Register allocation is more complicated for CISC machines