Lecture Outline

- Stack machines
- The MIPS assembly language
- A simple source language
- Stack machine implementation of the simple language

Stack Machines

- A simple evaluation model
 - No variables or registers
 - A stack of values for intermediate results
- Each instruction:
 - Takes its operands from the top of the stack
 - Removes those operands from the stack
 - Computes the required operation on them
 - Pushes the result on the stack

Example of Stack Machine Operation

- The addition operation on a stack machine

Example of a Stack Machine Program

- Consider two instructions
 - push i - place the integer i on top of the stack
 - add - pop two elements, add them and put the result back on the stack
- A program to compute 7 + 5:
  ```
  push 7
  push 5
  add
  ```

Why use a Stack Machine?

- Each operation takes operands from the same place and puts results in the same place
 - Location of the operands and result implicit
 - Always on the top of the stack
- This means a uniform compilation scheme and therefore a simpler compiler
 - Example: Instruction "add" as opposed to "add r1, r2"
 - Smaller encoding of instructions
 - More compact programs
- This is one reason why Java Bytecodes use a stack evaluation model
Optimizing the Stack Machine

- The `add` instruction does 3 memory operations:
 - Two reads and one write to the stack
 - The top of the stack is frequently accessed
- Idea: keep the top of the stack in a register (called accumulator)
 - Register accesses are faster
- The "add" instruction is now:

 \[
 \text{acc} \leftarrow \text{acc} + \text{top of stack}
 \]
 - Only one memory operation!

Stack Machine with Accumulator

Invariants

- The result of computing an expression is always in the accumulator
 - For an operation \(\text{op}(e_1, \ldots, e_n) \), push the accumulator on the stack after computing each of \(e_1, \ldots, e_{n-1} \)
 - After the operation, pop \(n-1 \) values
 - After computing an expression the stack is as before

Stack Machine with Accumulator. Example

- Compute \(7 + 5 \) using an accumulator

\[
\begin{array}{c|c|c}
\text{acc} & \text{stack} \\
\hline
7 & 5 & 12
\end{array}
\]

- \(\text{acc} \leftarrow 7 \)
- \(\text{push acc} \)
- \(\text{acc} \leftarrow 7 \)
- \(\text{pop} \)
- \(\text{acc} \leftarrow 7 + 5 \)
- \(\text{push acc} \)
- \(\text{acc} \leftarrow 7, 3, \text{<init>} \)
- \(\text{acc} \leftarrow 5 \)
- \(\text{push acc} \)
- \(\text{acc} \leftarrow 12 \)
- \(\text{pop} \)
- \(\text{acc} \leftarrow 15 \)

A Bigger Example: \(3 + (7 + 5) \)

<table>
<thead>
<tr>
<th>Code</th>
<th>Acc</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>acc \leftarrow 3</td>
<td>3</td>
<td>\text{<init>}</td>
</tr>
<tr>
<td>push acc</td>
<td>3</td>
<td>3, \text{<init>}</td>
</tr>
<tr>
<td>acc \leftarrow 7</td>
<td>7</td>
<td>3, \text{<init>}</td>
</tr>
<tr>
<td>push acc</td>
<td>7</td>
<td>7, 3, \text{<init>}</td>
</tr>
<tr>
<td>acc \leftarrow 5</td>
<td>5</td>
<td>7, 3, \text{<init>}</td>
</tr>
<tr>
<td>acc \leftarrow acc + top of stack</td>
<td>12</td>
<td>7, 3, \text{<init>}</td>
</tr>
<tr>
<td>pop</td>
<td>12</td>
<td>3, \text{<init>}</td>
</tr>
<tr>
<td>acc \leftarrow acc + top of stack</td>
<td>15</td>
<td>3, \text{<init>}</td>
</tr>
<tr>
<td>pop</td>
<td>15</td>
<td>\text{<init>}</td>
</tr>
</tbody>
</table>

Notes

- It is very important that the stack is preserved across the evaluation of a sub expression
 - Stack before the evaluation of \(7 + 5 \) is \(3, \text{<init>} \)
 - Stack after the evaluation of \(7 + 5 \) is \(3, \text{<init>} \)
 - The first operand is on top of the stack

From Stack Machines to MIPS

- The compiler generates code for a stack machine with accumulator
- We want to run the resulting code on the MIPS processor (or simulator)
- We simulate stack machine instructions using MIPS instructions and registers
Simulating a Stack Machine...

- The accumulator is kept in MIPS register $a0
- The stack is kept in memory
- The stack grows towards lower addresses
 - Standard convention on the MIPS architecture
- The address of the next location on the stack is kept in MIPS register $sp
 - The top of the stack is at address $sp + 4

MIPS Assembly

MIPS architecture
- Prototypical Reduced Instruction Set Computer (RISC) architecture
- Arithmetic operations use registers for operands and results
- Must use load and store instructions to use operands and results in memory
- 32 general purpose registers (32 bits each)
 - We will use $sp, $a0 and $t1 (a temporary register)
- Read the SPIM handout for more details

A Sample of MIPS Instructions

- lw reg, offset(reg2)
 - Load 32-bit word from address reg2 + offset into reg
- add reg, reg2 reg3
 - reg ← reg2 + reg3
- sw reg, offset(reg2)
 - Store 32-bit word in reg2 at address reg2 + offset
- addiu reg, reg2 imm
 - reg ← reg2 + imm
 - "u" means overflow is not checked
- li reg imm
 - reg ← imm

MIPS Assembly. Example.

- The stack machine code for 7 + 5 in MIPS:
 - acc ← 7
 - push acc
 - acc ← 5
 - acc ← acc + top_of_stack

A Small Language

- A language with integers and integer operations

P → D; P | D
D → def id(ARG5) = E;
ARG5 → id, ARG5 | id
E → int | id | if E1 = E2 then E3 else E4
 | E1 + E2 | E1 - E2 | id(E1,...,En)

A Small Language (Cont.)

- The first function definition f is the "main" routine
- Running the program on input i means computing f(i)
- Program for computing the Fibonacci numbers:
 - def fib(x) = if x = 1 then 0 else
 if x = 2 then 1 else
 fib(x - 1) + fib(x - 2)
Code Generation Strategy (Invariant)

- For each expression e, we generate MIPS code that:
 - Computes the value of e in $a0$
 - Preserves sp and the contents of the stack
- We define a code generation function $cgen(e)$ whose result is the code generated for e

Code Generation for Constants

- The code to evaluate a constant simply copies it into the accumulator:

 $cgen(i) = li \; a0 \; i$

- Note that this also preserves the stack, as required

Code Generation for Add

\[
cgen(e_1 + e_2) =
\]

- $cgen(e_1)$
- $sw \; a0 \; 0(\; sp \;)$
- $addiu \; sp \; sp \; -4$
- $cgen(e_2)$
- $lw \; t1 \; 4(\; sp \;)$
- $add \; a0 \; t1 \; a0$
- $addiu \; sp \; sp \; 4$
- Possible optimization: Put the result of e_1 directly in register $t1$?

Code Generation for Add. Wrong!

- Optimization: Put the result of e_1 directly in $t1$?

\[
cgen(e_1 + e_2) =
\]

- $cgen(e_1)$
- $move \; t1 \; a0$
- $cgen(e_2)$
- $add \; a0 \; t1 \; a0$

- Try to generate code for: $3 + (7 + 5)$

Code Generation Notes

- The code for + is a template with "holes" for code for evaluating e_1 and e_2
- Stack machine code generation is recursive
- Code for $e_1 + e_2$ consists of code for e_1 and e_2 glued together
- Code generation can be written as a recursive descent of the AST
 - At least for expressions

Code Generation for Sub and Constants

- New instruction: $sub \; reg1 \; reg2 \; reg3$
 - Implements $reg1 \leftarrow reg2 - reg3$
\[
cgen(e_1 - e_2) =
\]

- $cgen(e_1)$
- $sw \; a0 \; 0(\; sp \;)$
- $addiu \; sp \; sp \; -4$
- $cgen(e_2)$
- $lw \; t1 \; 4(\; sp \;)$
- $sub \; a0 \; t1 \; a0$
- $addiu \; sp \; sp \; 4$
Code Generation for Conditional

- We need flow control instructions
- New instruction: `beq reg1 reg2 label`
 - Branch to label if `reg1 = reg2`
- New instruction: `b label`
 - Unconditional jump to label

Code Generation for If (Cont.)

cgen(if \(e_1 = e_2\) then \(e_3\) else \(e_4\)) =

cgen(\(e_1\))

sw $a0 0($sp)

addiu $sp $sp -4

cgen(\(e_2\))

lw $t1 4($sp)

addiu $sp $sp 4

beq $a0 $t1 true_branch

false_branch:

cgen(\(e_4\))
b end_if

true_branch:

cgen(\(e_3\))

dif end_if:

The Activation Record

- Code for function calls and function definitions depends on the layout of the activation record
- A very simple AR suffices for this language:
 - The result is always in the accumulator
 - No need to store the result in the AR
 - The activation record holds actual parameters
 - For \(\text{f}(x_1,\ldots,x_n)\), push \(x_n,\ldots,x_1\) on the stack
 - These are the only variables in this language

The Activation Record (Cont.)

- The stack discipline guarantees that on function exit \(\text{sp}\) is the same as it was on function entry
 - No need for a control link
- We need the return address
- It’s handy to have a pointer to the current activation
 - This pointer lives in register \(\text{fp}\) (frame pointer)
 - Reason for frame pointer will be clear shortly

The Activation Record

- **Summary:** For this language, an AR with the caller's frame pointer, the actual parameters, and the return address suffices
- **Picture:** Consider a call to \(\text{f}(x,y)\), The AR will be:

```
FP
old fp
y
x
SP
```

Code Generation for Function Call

- The calling sequence is the instructions (of both caller and callee) to set up a function invocation
- New instruction: `jal label`
 - Jump to label, save address of next instruction in \(\text{ra}\)
 - On other architectures, the return address is stored on the stack by the "call" instruction
Code Generation for Function Call (Cont.)

cgen(f(e₁,…,eₙ)) =
sw $fp 0($sp)
addiu $sp $sp -4
cgen(e₁)
sw $a0 0($sp)
addiu $sp $sp -4
....
cgen(eₙ)
sw $a0 0($sp)
addiu $sp $sp -4
jal f_entry

- The caller saves its value of the frame pointer
- Then it saves the actual parameters in reverse order
- The caller saves the return address in register $ra
- The AR so far is $4n+4$ bytes long

Code Generation for Function Definition

• New instruction: jr reg
 – Jump to address in register reg

cgen(def f(x₁,…,xₙ) = e) =
mov $fp $sp
sw $ra 0($sp)
addiu $sp $sp -4
cgen(e)
lw $ra 4($sp)
addiu $sp $sp 4
lw $fp 0($sp)
jr $ra

- Note: The frame pointer points to the top, not bottom of the frame.
- The callee saves the return address, to enable later calls.
- The callee finally restores the return address, pops the actual arguments, and restores the saved value of the frame pointer.
- $z = 4n+8$

Calling Sequence. Example for f(x,y).

Before call	On entry	Before exit	After call
FP | FP | FP | FP
SP | old FP | old FP | SP

In caller
- SP: x
- FP: y

By caller
- SP: Popped by callee
- FP: return

Code Generation for Variables

• Variable references are the last construct
 – The "variables" of a function are just its parameters
 - They are all in the AR
 - Pushed by the caller (and later popped by the callee)

• Problem: Because the stack grows when intermediate results are saved, the variables are not at a fixed offset from sp

Code Generation for Variables (Cont.)

• Solution: use a frame pointer
 – Always points to the return address on the stack
 – Since it does not move, it can be used to find the variables

• Let $xᵢ$ be the i^{th} ($i = 1,…,n$) formal parameter of the function for which code is being generated

 cgen($xᵢ$) = lw $a0 z($fp) ($z = 4*ᵢ$)

Code Generation for Variables (Cont.)

• Example: For a function $def f(x,y) = e$ the activation and frame pointer are set up as follows:

 - X is at fp + 4
 - Y is at fp + 8
Summary

• The activation record must be designed together with the code generator
• Code generation can be done by recursive traversal of the AST
 - Use of a stack machine recommended for Cool compiler (it's simple)
• Production compilers do different things
 - Emphasis is on keeping values (esp. current stack frame) in registers
 - Intermediate results are laid out in the AR, not pushed and popped from the stack