Implementation of Lexical Analysis (Scanning)

Adapted from material by:
Prof. Alan Aiken and Prof. George Necula (UCB)
Prof. Saman Amarasinghe (MIT)

Outline

• Specifying lexical structure using regular expressions
• Recognizing tokens using finite automata
 ➢ Deterministic Finite Automata (DFAs)
 ➢ Non-deterministic Finite Automata (NFAs)
• Implementation of regular expressions
 RegExp => NFA => DFA => Tables

Regular Expressions => Lexical Spec.

1. Write a regular expression for the lexemes of each token
 • Number = digit (Kleene plus)
 • Keyword = ‘if’ | ‘else’ | … (Union)
 • Identifier = letter (letter | digit)*
 • OpenPar = ‘(’
 • …
2. Construct R, matching all lexemes for all tokens
 R = Keyword | Identifier | Number | …
 = R₁ | R₂ | …

(Cont’d)

3. Let input be the sequence of characters
 x₁…xₙ
 • For each 1 ≤ i ≤ n, check if
 x₁…xᵢ ∈ L(R)
4. It must be that
 x₁…xᵢ ∈ L(R) for some j
5. Remove x₁…xᵢ from input and go to (3)

Problem:
There are ambiguities in the algorithm.
Ambiguities

- How much input is used? What if
 - $x_1 \ldots x_i \in L(R)$ and also
 - $x_1 \ldots x_K \in L(R)$
 - Rule: Pick longest possible string in $L(R)$
 - The “maximal munch” $\subseteq \forall <, \not= \forall$

- Which token is used? What if
 - $x_1 \ldots x_i \in L(R_j)$ and also
 - $x_1 \ldots x_i \in L(R_k)$
 - Rule: use rule listed first (if $j < k$)
 - Treats “if” as a keyword not an identifier

Error Handling

- What if
 - No rule matches a prefix of input?
- Problem: Can get stuck …

- Solution:
 - Write a rule matching all “bad” strings
 - Put it last (catch-all clause)

Summary

- Regular expressions provide a concise notation for string patterns.
- Use in lexical analysis requires small extensions:
 - To resolve ambiguities
 - To handle errors
- Good algorithms known
 - Require only single pass over the input
 - Few operations per character (table lookup)

Parity Problem

- $\Sigma = \{0,1\}, \omega \in \Sigma^*$
- $\text{parity}: \Sigma^* \to \text{boolean}$
- $\text{parity}(\omega) \iff \omega$ contains even number of 1s

Finite automaton = Recognizer
Basic Features

- Consumes the entire input string.
- Remembers the parity of the bit string by abstracting from the number of 1s in the string.
- Finite amount of memory required for this purpose.
 - Observe that counting requires unbounded memory, while computing the parity requires very small and fixed amount of memory.
- Accepts/Rejects the input in a deterministic fashion.

Deterministic Finite State Automaton (DFA)

\[M = (Q, \Sigma, \delta, q_0, F) \]

- \(Q \): Finite set of states
- \(\Sigma \): Finite Alphabet
- \(\delta \): Transition function total function from \(Q \times \Sigma \) to \(Q \)
- \(q_0 \): Initial/Start State
- \(F \): Set of final/accepting state

Finite Automata State Graphs

- State
- The start state
- An accepting state
- A transition

Operation of the machine

- Read the current letter of input under the tape head.
- Transit to a new state depending on the current input and the current state, as dictated by the transition function.
- Halt after consuming the entire input.
Associating Language with DFA

- **Machine configuration:**
 \[[q, \omega] \text{ where } q \in Q, \omega \in \Sigma^* \]

- **Yields relation:**
 \[[q, a\omega] \mapsto_M [\delta(q, a), \omega] \]

- **Language:**
 \[\{ \omega \in \Sigma^* | [q_0, \omega] \mapsto_M [q, \varepsilon] \land q \in F \} \]

Example

- **Set of strings over \(\{a, b\} \) that contain \(bb \)
 \((a | b)^* bb(a | b)^*\)

- **Design states by partitioning \(\Sigma^* \).**
 - Strings containing \(bb \) \(q_2 \)
 - Strings not containing \(bb \)
 - Strings that end in \(b \) \(q_1 \)
 - Strings that do not end in \(b \) \(q_0 \)

- **Initial state:** \(q_0 \)
- **Final state:** \(q_2 \)

State Diagram and Table

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q_1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q_2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transition</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>(q_0)</td>
<td>(q_1)</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(q_0)</td>
<td>(q_2)</td>
</tr>
<tr>
<td>(q_2)</td>
<td>(q_2)</td>
<td>(q_2)</td>
</tr>
</tbody>
</table>

| String over \(\{a, b\} \) that do not contain \(bb \) |
|-----------------|---|---|
| \(q_0 \) | | |
| \(q_1 \) | | |
| \(q_2 \) | | |

<table>
<thead>
<tr>
<th>Transition</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>(q_0)</td>
<td>(q_1)</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(q_0)</td>
<td>(q_2)</td>
</tr>
<tr>
<td>(q_2)</td>
<td>(q_2)</td>
<td>(q_2)</td>
</tr>
</tbody>
</table>
Strings over \{a, b\} containing even number of a’s and odd number of b’s.

\[\Sigma^* \]

\[\{E_a, E_b\} \]

\[\{O_a, O_b\} \]

Example

- Alphabet \{0, 1\}
- What language does this recognize?

Nondeterministic Finite Automata

DFA

\[\delta_{DFA} : Q \times \Sigma \rightarrow Q \]

NFA

\[\delta_{NFA} : Q \times \Sigma \rightarrow \text{Pow}(Q) \]

\[\delta_{NFA} \subseteq Q \times \Sigma \times Q \]

\[(a, b)^* bb \]

NFA State Diagram

(Strings over \{a, b\} ending in bb)

\[Q = \{q_0, q_1, q_2\} \]

\[\Sigma = \{a, b\} \]

\[F = \{q_2\} \]

\[\delta \]

\[\begin{array}{c|cc}
 \delta & a & b \\
 \hline
 q_0 & \{q_0\} & \{q_0, q_1\} \\
 q_1 & \phi & \{q_2\} \\
 q_2 & \phi & \phi \\
\end{array} \]
Introducing ε-transitions into NFA

$\delta : Q \times (\Sigma \cup \{\varepsilon\}) \rightarrow P(Q)$

- A ε-transition causes the machine to change its state non-deterministically, without consuming any input.

$L(DFAs) \subseteq L(NFAs)$

Deterministic and Nondeterministic Automata

- Deterministic Finite Automata (DFA)
 - One transition per input per state
 - No ε-moves
- Nondeterministic Finite Automata (NFA)
 - Can have multiple transitions for one input in a given state
 - Can have ε-moves
- Finite automata have finite memory
 - Need only to encode the current state

How do we associate a language with NFA?

- A DFA can take only one path through the state graph
- NFAs can choose
 - Whether to make ε-moves
 - Or one of the multiple transitions for a single input to take
 - Accept if there exists a accepting computation.
 - Reject if all computations are non-accepting.
Every DFA is an NFA. However, does non-determinism make NFAs strictly more expressive (powerful) than DFAs?

\[L(\text{NFAs}) \supseteq L(\text{DFAs}) \]

- For type 0 languages (Turning Machines) and type 3 languages (regular languages), non-determinism does not add expressive power.
- For context-free languages and context-sensitive languages, non-determinism does enhance the expressive power.
NFA vs. DFA

- NFAs and DFAs recognize the same set of languages (regular languages).
- DFAs are faster to execute
 - There are no choices to consider.
- For a given language, NFA can be simpler than DFA
- DFA can be exponentially larger than NFA.

Reg. Expr. to Finite Automata

- High-level sketch

Regular Expressions to NFA (1)

- For each kind of regular expr., define an NFA
 - Notation: NFA for rexp M

Regular Expressions to NFA (2)

- For \(A \) and \(B \)
 - For \(A \) and \(B \)
- For \(A | B \)
 - For \(A | B \)
Regular Expressions to NFA (3)

- For A^*

\[A^* \]

\[\varepsilon \]

Thompson's Construction

Reg. Expr. \rightarrow NFA conversion

- Consider the regular expression $(1|0)^*1$

\[(1|0)^*1 \]

- The corresponding NFA is

NFA to DFA: The Trick

- Simulate the NFA, *in parallel*
 - Michael Rabin and Dana Scott's work
- Each state of DFA
 - a non-empty subset of states of the NFA
- Start state
 - the set of NFA states reachable through ε-moves from NFA start state
- Add a transition $S \rightarrow S'$ to DFA *iff*
 - S' is the set of NFA states reachable from some state in S after seeing the input 'a', considering ε-moves as well
NFA to DFA: Remark

- An NFA may be in many states at any time.
- How many different states?
 - If there are N states, the NFA must be in some subset of those N states
- How many subsets are there?
 - $2^N - 1$ = finitely many
- NFA \rightarrow DFA conversion is at the heart of tools such as flex. In practice, flex-like tools trade off speed for space in the choice of NFA and DFA representations. *(DFA Minimization)*
 - Myhill-Nerode's work

NFA \rightarrow DFA Example

Implementation

- A DFA can be implemented by a 2D table T
 - One dimension is “states”
 - Other dimension is “input symbol”
 - For every transition $S_i \rightarrow S_k$ define $T[i,a] = k$
- DFA “execution”
 - If in state S_i and input ‘a’, read $T[i,a] = k$ and skip to state S_k
 - Very efficient

Table Implementation of a DFA

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>U</td>
<td>T</td>
<td>U</td>
</tr>
</tbody>
</table>
Finite State Machine Minimization

Language over \(\{H, T\} \) : Strings with even number of \(H \)

Minimizing DFA: The Idea

- Two states \(s \) and \(t \) should be merged unless there is some way to tell them apart.
 - Initially, assume that all states are equivalent until proven otherwise.
- How can we tell if two states \(s \) and \(t \) are different?
 - If one is accepting and the other is not.
 - If, on input \(c \), \(s \rightarrow x \) and \(t \rightarrow y \), and we already know \(x \) is different from \(y \).

Minimizing DFA: The Algorithm

- Overall, it partitions the set of states.
- Initial partition:
 - \(\emptyset \) (Accepting States, Non-accepting states)
- Refinement:
 - In each pass, find a new partition for each state such that
 - \(s \) and \(t \) are in the same new partition if and only if states \(s \) and \(t \) were in the same old partition, and, on each input \(c \), states \(s \) and \(t \) go to states in the same partition.

Example DFA
Refinement of State Partitions

- \{ \{ q_0, q_7 \}, \{ q_1, q_2, q_3, q_4, q_5, q_6 \} \}
- \{ \{ q_0 \}, \{ q_7 \}, \{ q_1, q_2, q_3, q_4, q_5, q_6 \} \}
 - On any transition
- \{ \{ q_0 \}, \{ q_7 \}, \{ q_1, q_2, q_3, q_4, q_5, q_6 \} \}
- \{ \{ q_0 \}, \{ q_7 \}, \{ q_1, q_4 \}, \{ q_2, q_3, q_5, q_6 \} \}
 - On "a" transition
- \{ \{ q_0 \}, \{ q_7 \}, \{ q_1, q_4 \}, \{ q_2, q_5 \}, \{ q_3, q_6 \} \}
 - On "b" transition

Example DFA showing equivalent states

Example Minimum DFA

Summary

- Lexer creates tokens out of a text stream.
- Tokens are defined using regular expressions.
- Regular expressions can be mapped to Non-deterministic Finite Automata (NFA)
- NFA is transformed to a DFA
 - By removing non-determinism, and
 - By minimizing states.
- Executing a DFA is straightforward.
- Common scanner generator tools
 - lex, flex in C
 - jflex in Java
What’s Next?

- Program (character stream)
- Lexical Analyzer (Scanner)
- Syntax Analyzer (Parser)
- Token Stream
- Parse Tree
- Intermediate Code Generator
- Intermediate Representation
- Intermediate Code Optimizer
- Optimized Intermediate Representation
- Code Generator
- Assembly code

Animating Lexical Analysis

Lexical Analyzer in Action

for ID("var1") eq_op Num(10) ID("var1") leq_op
Lexical Analyzer in Action

- Partition input program text into subsequence of characters corresponding to tokens
- Attach the corresponding attributes to the tokens
- Eliminate white space and comments

Animating NFA construction

(-|ε) (0|1|2|3|4|5|6|7|8|9)+ (.·(0|1|2|3|4|5|6|7|8|9)*)?

(-|ε)

Animating Token Recognition

String Matching

17
1. Closure

- The closure of a state is the set of states that can be reached from that state without consuming any of the input.
 - Closure(S) is the smallest set T such that
 \[T = S \cup \bigcup_{s \in S} \text{edge}(s, \epsilon) \]

- Algorithm

 \[
 \begin{align*}
 T & \leftarrow S \\
 \text{repeat} \\
 T' & \leftarrow T \\
 T & \leftarrow T \cup \bigcup_{s \in S} \text{edge}(s, \epsilon) \\
 \text{until} \\
 T & = T'
 \end{align*}
 \]
\(S = \{1\} \)
\(T = \{1\} \)
\(T' = \{\} \)

1. \(T \leftarrow S \)
2. \(\text{repeat} \)
 \(T' \leftarrow T \)
 \(T \leftarrow T' \cup \bigcup_{s \in S} \text{edge}(s, s) \)
3. \(\text{until} \quad T = T' \)

\(S = \{1\} \)
\(T = \{1, 2\} \)
\(T' = \{1\} \)

1. \(T \leftarrow S \)
2. \(\text{repeat} \)
 \(T' \leftarrow T \)
 \(T \leftarrow T' \cup \bigcup_{s \in S} \text{edge}(s, s) \)
3. \(\text{until} \quad T = T' \)
\[S = \{1\} \]
\[T = \{1, 2\} \]
\[T' = \{1, 2\} \]

\[T \leftarrow S \]
\[\text{repeat} \]
\[T' \leftarrow T \]
\[T \leftarrow T' \bigcup \bigcup_{s, (s, e)} \]
\[\text{until} \quad T = T' \]
Question: What is closure(3)?

\[S = \{3\} \]

\[T = ??? \]

Question: What is closure(3)?

\[S = \{3\} \]

\[T = \{2, 3, 4, 8\} \]

2. DFAedge

- Given a symbol and a state, what states can you reach?
What is DFAedge({1}, 3)?

d = {1}

closure({1}) = {1, 2}

DFAedge({1}, 3) = {}

What is DFAedge({1}, 3)?

d = {1}

closure({1}) = {1, 2}

DFAedge({1}, 3) = {}

What is DFAedge({1}, 3)?

d = {1, 2}

DFAedge({1}, 3) = {3}

What is DFAedge({1}, 3)?

d = {1, 2}

closure({1}) = {1, 2}

DFAedge({1}, 3) = {3}
What is $\text{DFAedge}({1}, 3)$?

$d = \{1, 2\}$
$closure(3) = \{2, 3, 4, 8\}$

$\text{DFAedge}({1}, 3) = \{2, 3, 4, 8\}$

Question: What is $\text{DFAedge}({3}, .)$?

$d = \{3\}$

$\text{DFAedge}({3}, .) = \{5, 6, 8\}$
closure(1) =\{1, 2\}

DFAedge(\{1,2\}, \rightarrow) =\{2\}

Closure(\{2\}) =\{2\}

DFAedge(\{1,2\}, 0..9) =\{3\}
Closure({3}) = {2, 3, 4, 8}

DFAEdge({2, 3, 4, 8}, 0..9) = {3}
Closure({3}) = {2, 3, 4, 8}

DFAEdge({2, 3, 4, 8}, .) = {5}
Closure({5}) = {5, 6, 8}
What is the minimal DFA for the following?