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What is a support vector machine?
William S Noble

Support vector machines (SVMs) are becoming popular in a wide variety of biological applications. But, what exactly are 
SVMs and how do they work? And what are their most promising applications in the life sciences?

A support vector machine (SVM) is a com-
puter algorithm that learns by example to 

assign labels to objects1. For instance, an SVM 
can learn to recognize fraudulent credit card 
activity by examining hundreds or thousands 
of fraudulent and nonfraudulent credit card 
activity reports. Alternatively, an SVM can learn 
to recognize handwritten digits by examining 
a large collection of scanned images of hand-
written zeroes, ones and so forth. SVMs have 
also been successfully applied to an increas-
ingly wide variety of biological applications. 
A common biomedical application of support 
vector machines is the automatic classifica-
tion of microarray gene expression profiles. 
Theoretically, an SVM can examine the gene 
expression profile derived from a tumor sample 
or from peripheral fluid and arrive at a diagnosis 
or prognosis. Throughout this primer, I will use 
as a motivating example a seminal study of acute 
leukemia expression profiles2. Other biological 
applications of SVMs involve classifying objects 
as diverse as protein and DNA sequences, micro-
array expression profiles and mass spectra3.

In essence, an SVM is a mathematical entity, 
an algorithm (or recipe) for maximizing a par-
ticular mathematical function with respect to a 
given collection of data. The basic ideas behind 
the SVM algorithm, however, can be explained 
without ever reading an equation. Indeed, I 
claim that, to understand the essence of SVM 
classification, one needs only to grasp four basic 
concepts: (i) the separating hyperplane, (ii) the 
maximum-margin hyperplane, (iii) the soft 
margin and (iv) the kernel function.

Before describing an SVM, let’s return to the 
problem of classifying cancer gene expression 
profiles. The Affymetrix microarrays employed 

by Golub et al.2 contained probes for 6,817 
human genes. For a given bone marrow sample, 
the microarray assay returns 6,817 values, each 
of which represents the mRNA levels corre-
sponding to a given gene. Golub et al. performed 
this assay on 38 bone marrow samples, 27 from 
individuals with acute lymphoblastic leuke-
mia (ALL) and 11 from individuals with acute 
myeloid leukemia (AML). These data represent 
a good start to ‘train’ an SVM to tell the differ-
ence between ALL and AML expression profiles. 
If the learning is successful, then the SVM will 
be able to successfully diagnose a new patient 
as AML or ALL based upon its bone marrow 
expression profile.

For now, to allow an easy, geometric interpre-
tation of the data, imagine that the microarrays 
contained probes for only two genes. In this case, 
our gene expression profiles consist of two num-
bers, which can be easily plotted (Fig. 1a). Based 
upon results from a previous study4, I have 
selected the genes ZYX and MARCKSL1. In the 
figure, values are proportional to the intensity of 
the fluorescence on the microarray, so on either 
axis, a large value indicates that the gene is highly 
expressed and vice versa. The expression levels 
are indicated by a red or green dot, depending 
upon whether the sample is from a patient with 
ALL or AML. The SVM must learn to tell the 
difference between the two groups and, given 
an unlabeled expression vector, such as the one 
labeled ‘Unknown’ in the figure, predict whether 
it corresponds to a patient with ALL or AML.

The separating hyperplane
The human eye is very good at pattern rec-
ognition. Even a quick glance at Figure 1a 
shows that the AML profiles form a cluster in 
the upper left region of the plot, and the ALL 
profiles cluster in the lower right. A simple 
rule might state that a patient has AML if the 
expression level of MARCKSL1 is twice as high 
as the expression level of ZYX, and vice versa 
for ALL. Geometrically, this rule corresponds 

to drawing a line between the two clusters (Fig. 
1b). Subsequently, predicting the label of an 
unknown expression profile is easy: one simply 
needs to ask whether the new profile falls on the 
ALL or the AML side of this separating line.

Now, to define the notion of a separating 
hyperplane, consider a situation in which the 
microarray does not contain just two genes. 
For example, if the microarray contains a single 
gene, then the ‘space’ in which the correspond-
ing one-dimensional expression profiles reside 
is a one-dimensional line. We can divide this 
line in half by using a single point (Fig. 1c). In 
two dimensions (Fig. 1b), a straight line divides 
the space in half, and in three dimensions, we 
need a plane to divide the space (Fig. 1d). We 
can extrapolate this procedure mathematically 
to higher dimensions. The general term for a 
straight line in a high-dimensional space is a 
hyperplane, and so the separating hyperplane 
is, essentially, the line that separates the ALL and 
AML samples.

The maximum-margin hyperplane
The concept of treating the objects to be classi-
fied as points in a high-dimensional space and 
finding a line that separates them is not unique 
to the SVM. The SVM, however, is different 
from other hyperplane-based classifiers by vir-
tue of how the hyperplane is selected. Consider 
again the classification problem portrayed in 
Figure 1a. We have now established that the goal 
of the SVM is to identify a line that separates 
the ALL from the AML expression profiles in 
this two-dimensional space. However, many 
such lines exist (Fig. 1e). Which one provides 
the best classifier?

With some thought, one may come up 
with the simple idea of selecting the line that 
is, roughly speaking, ‘in the middle’. In other 
words, one would select the line that separates 
the two classes but adopts the maximal distance 
from any one of the given expression profiles 
(Fig. 1f). It turns out that a theorem from the 
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field of statistical learning theory supports 
exactly this choice5. If we define the distance 
from the separating hyperplane to the nearest 
expression vector as the margin of the hyper-
plane, then the SVM selects the maximum-
margin separating hyperplane. Selecting this 
particular hyperplane maximizes the SVM’s 
ability to predict the correct classification of 
previously unseen examples.

This theorem is, in many ways, the key to an 
SVM’s success. Let’s take a minute, therefore, to 
consider some caveats that come with it. First, 
the theorem assumes that the data on which the 
SVM is trained are drawn from the same distri-
bution as the data on which it is tested. This is 
reasonable, since we cannot expect, for example, 
an SVM trained on microarray data to be able to 
classify mass spectrometry data. More relevantly, 
we cannot expect the SVM to perform well if the 
bone marrow samples for the training data set 
were prepared using a different protocol than 

the samples for the test data set. On the other 
hand, the theorem does not assume that the two 
data sets were drawn from a particular class of 
distributions. For example, an SVM does not 
assume that the training data values follow a 
normal distribution.

The soft margin
So far, we have assumed that the data can be 
separated using a straight line. Of course, many 
real data sets cannot be separated as cleanly; 
instead, they look like the one in Figure 1g, 
where the data set contains an ‘error’, the circled 
gene expression profile. Intuitively, we would 
like the SVM to be able to deal with errors in 
the data by allowing a few anomalous expression 
profiles to fall on the ‘wrong side’ of the separat-
ing hyperplane. To handle cases like these, the 
SVM algorithm has to be modified by adding a 
‘soft margin’. Essentially, this allows some data 
points to push their way through the margin 

of the separating hyperplane without affecting 
the final result. Figure 1h shows the soft margin 
solution to the problem in Figure 1g. The one 
outlier now resides on the same side of the line 
with members of the opposite class.

Of course, we don’t want the SVM to allow for 
too many misclassifications. Hence, introducing 
the soft margin necessitates introducing a user-
specified parameter that controls, roughly, how 
many examples are allowed to violate the sepa-
rating hyperplane and how far across the line 
they are allowed to go. Setting this parameter is 
complicated by the fact that we still want to try 
to achieve a large margin with respect to the cor-
rectly classified examples. Hence, the soft margin 
parameter specifies a trade-off between hyper-
plane violations and the size of the margin.

The kernel function
To understand the notion of a kernel function, 
we are going to simplify our example set even 
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Figure 1  Support vector machines (SVMs) at work. (a) Two-dimensional expression profiles of lymphoblastic leukemia (ALL) and acute myeloid leukemia 
(AML) samples. Each dimension corresponds to the measured mRNA expression level of a given gene. The SVM’s task is to assign a label to the gene 
expression profile labeled ‘Unknown’. (b) A separating hyperplane. Based upon this hyperplane, the inferred label of the ‘Unknown’ expression profile 
is ‘ALL’. (c) A hyperplane in one dimension. The hyperplane is shown as a single black point. (d) A hyperplane in three dimensions. (e) Many possible 
separating hyperplanes. (f) The maximum-margin hyperplane. The three support vectors are circled. (g) A data set containing one error, indicated by 
arrow. (h) A separating hyperplane with a soft margin. Error is indicated by arrow. (i) A nonseparable one-dimensional data set. (j) Separating previously 
nonseparable data. (k) A linearly nonseparable two-dimensional data set, which is linearly separable in four dimensions. (l) An SVM that has overfit a two-
dimensional data set. In a, b, d–h, the expression values are divided by 1,000.

PR IMER
©

20
06

 N
at

ur
e 

P
ub

lis
hi

ng
 G

ro
up

  
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy



NATURE BIOTECHNOLOGY   VOLUME 24   NUMBER 12   DECEMBER 2006 1567

further. Rather than a microarray contain-
ing two genes, let’s assume that we now have 
only a single gene expression measurement 
(Fig. 1c). In that case, the maximum-margin-
separating hyperplane is a single point. Figure 1i 
illustrates the analogous case of a nonseparable 
data set. Here, the AML values are grouped near 
zero, and the ALL examples have large absolute 
values. The problem is that no single point can 
separate the two classes, and introducing a soft 
margin would not help.

The kernel function provides a solution to 
this problem by adding an additional dimen-
sion to the data (Fig. 1j). In this case, to get the 
new dimension, the original expression values 
were simply squared. Fortuitously, as shown in 
the figure, this simple step separates the ALL 
and AML examples with a straight line in the 
two-dimensional space. In essence, the kernel 
function is a mathematical trick that allows 
the SVM to perform a ‘two-dimensional’ clas-
sification of a set of originally one-dimensional 
data. In general, a kernel function projects data 
from a low-dimensional space to a space of 
higher dimension. If one is lucky (or smart) 
and chooses a good kernel function, the data 
will become separable in the resulting higher 
dimensional space.

To understand kernels a bit better, consider the 
two-dimensional data set shown in Figure 1k. 
These data cannot be separated using a straight 
line, but a relatively simple kernel function that 
projects the data from the two-dimensional 
space up to four dimensions (corresponding to 
the products of all pairs of features) allows the 
data to be linearly separated. We cannot draw 
the data in a four-dimensional space, but we 
can project the SVM hyperplane in that space 
back down to the original two-dimensional 
space. The result is shown as the curved line in 
Figure 1k.

It is possible to prove that, for any given data 
set with consistent labels (where consistent 
simply means that the data set does not contain 
two identical objects with opposite labels) there 
exists a kernel function that will allow the data 
to be linearly separated. This observation begs 
the question of why not always project the data 
into a very high-dimensional space, to be sure 
of finding a separating hyperplane. This would 
take care of the need for soft margins, whereas 
the original theorem would still apply.

This is a reasonable suggestion—however, 
projecting into very high-dimensional spaces 
can be problematic, due to the so-called curse 
of dimensionality: as the number of variables 
under consideration increases, the number of 
possible solutions also increases, but exponen-
tially. Consequently, it becomes harder for any 
algorithm to select a correct solution. Figure 1l 
shows what happens when a data set is projected 

into a space with too many dimensions. The 
figure contains the same data as Figure 1k, but 
the projected hyperplane comes from an SVM 
that uses a very high-dimensional kernel func-
tion. The result is that the boundary between 
the classes is very specific to the examples in 
the training data set. The SVM is said to have 
overfit the data. Clearly, such an SVM will not 
generalize well when presented with new gene 
expression profiles.

This observation brings us to the largest prac-
tical difficulty encountered when applying an 
SVM classifier to a new data set. One would like 
to use a kernel function that is likely to allow the 
data to be separated but without introducing 
too many irrelevant dimensions. How is such 
a function best chosen? Unfortunately, in most 
cases, the only realistic answer is trial and error. 
Investigators typically begin with a simple SVM, 
and then experiment with a variety of ‘standard’ 
kernel functions. An optimal kernel function can 
be selected from a fixed set of kernels in a sta-
tistically rigorous fashion by using cross-valida-
tion. However, this approach is time-consuming 
and does not guarantee that a kernel function 
that was not considered in the cross-validation 
procedure would not perform better.

In addition to allowing SVMs to handle non-
linearly separable data sets and to incorporate 
prior knowledge, the kernel function yields at 
least two additional benefits. First, kernels can 
be defined on inputs that are not vectors. This 
ability to handle nonvector data is critical in bio-
logical applications, allowing the SVM to classify 
DNA and protein sequences, nodes in meta-
bolic, regulatory and protein-protein interac-
tion networks and microscopy images. Second, 
kernels provide a mathematical formalism for 
combining different types of data. Imagine, for 
example, that we are doing biomarker discovery 
for the ALL/AML distinction, and we have the 
Golub et al. data plus a corresponding collection 
of mass spectrometry profiles from the same set 
of patients. It turns out that we can use simple 
algebra to combine a kernel on microarray data 
with a kernel on mass spectrometry data. The 
resulting joint kernel would allow us to train a 
single SVM to perform classification on both 
types of data simultaneously.

Extensions of the SVM algorithm
The most obvious drawback to the SVM algo-
rithm, as described thus far, is that it apparently 
only handles binary classification problems. We 
can discriminate between ALL and AML, but 
how do we discriminate among a large variety 
of cancer classes? Generalizing to multiclass clas-
sification is straightforward and can be accom-
plished by using any of a variety of methods. 
Perhaps the simplest approach is to train mul-
tiple, one-versus-all classifiers. Essentially, to 

recognize three classes, A, B and C, we simply 
have to train three separate SVMs to answer the 
binary questions, “Is it A?,” “Is it B?” and “Is it 
C?” This simple approach actually works quite 
well for cancer classification6. More sophisti-
cated approaches also exist, which generalize 
the SVM optimization algorithm to account 
for multiple classes. 

For data sets of thousands of examples, solv-
ing the SVM optimization problem is quite fast. 
Empirically, running times of state-of-the-art 
SVM learning algorithms scale approximately 
quadratically, which means that when you give 
the SVM twice as much data, it requires four 
times as long to run. SVMs have been successfully 
trained on data sets containing approximately 
one million examples, and fast approximation 
algorithms exist that scale almost linearly and 
perform nearly as well as the SVM7.

Conclusion
Using all 6,817 gene expression measure-
ments, an SVM can achieve near-perfect clas-
sification accuracy on the ALL/AML data set8. 
Furthermore, an even larger data set has been 
used to demonstrate that SVMs also perform 
better than a variety of alternative methods for 
cancer classification from microarray expression 
profiles6. Although this primer has focused on 
cancer classification from gene expression pro-
files, SVM analysis can be applied to a wide vari-
ety of biological data. As we have seen, the SVM 
boasts a strong theoretical underpinning, cou-
pled with remarkable empirical results across a 
growing spectrum of applications. Thus, SVMs 
will probably continue to yield valuable insights 
into the growing quantity and variety of molec-
ular biology data.
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