
Programming
Hadoop Map-Reduce

Programming, Tuning & Debugging

Arun C Murthy
Yahoo! CCDI

acm@yahoo-inc.com
ApacheCon US 2008

Existential angst: Who am I?

•  Yahoo!
–  Grid Team (CCDI)

•  Apache Hadoop
–  Developer since April 2006
–  Core Committer (Map-Reduce)
–  Member of the Hadoop PMC

Hadoop - Overview

•  Hadoop includes:
–  Distributed File System - distributes data
–  Map/Reduce - distributes application

•  Open source from Apache
•  Written in Java
•  Runs on

–  Linux, Mac OS/X, Windows, and Solaris
–  Commodity hardware

Distributed File System

•  Designed to store large files
•  Stores files as large blocks (64 to 128 MB)
•  Each block stored on multiple servers
•  Data is automatically re-replicated on need
•  Accessed from command line, Java API, or C API

–  bin/hadoop fs -put my-file hdfs://node1:50070/foo/bar
–  Path p = new Path(“hdfs://node1:50070/foo/bar”);
 FileSystem fs = p.getFileSystem(conf);
 DataOutputStream file = fs.create(p);
 file.writeUTF(“hello\n”);
 file.close();

Map-Reduce

•  Map-Reduce is a programming model for efficient
distributed computing

•  It works like a Unix pipeline:
–  cat input | grep | sort | unique -c | cat > output
–  Input | Map | Shuffle & Sort | Reduce | Output

•  Efficiency from
–  Streaming through data, reducing seeks
–  Pipelining

•  A good fit for a lot of applications
–  Log processing
–  Web index building

Map/Reduce features

•  Fine grained Map and Reduce tasks
–  Improved load balancing
–  Faster recovery from failed tasks

•  Automatic re-execution on failure
–  In a large cluster, some nodes are always slow or flaky
–  Introduces long tails or failures in computation

–  Framework re-executes failed tasks

•  Locality optimizations
–  With big data, bandwidth to data is a problem
–  Map-Reduce + HDFS is a very effective solution

–  Map-Reduce queries HDFS for locations of input data
–  Map tasks are scheduled local to the inputs when possible

Mappers and Reducers

•  Every Map/Reduce program must specify a Mapper
and typically a Reducer

•  The Mapper has a map method that transforms input
(key, value) pairs into any number of intermediate
(key’, value’) pairs

•  The Reducer has a reduce method that transforms
intermediate (key’, value’*) aggregates into any number
of output (key’’, value’’) pairs

Map/Reduce Dataflow

Example…

 “45% of all Hadoop tutorials count words. 25% count
sentences. 20% are about paragraphs. 10% are log
parsers. The remainder are helpful.”

 jandersen @http://twitter.com/jandersen/statuses/
926856631

Example: Wordcount Mapper

 public static class MapClass extends MapReduceBase
 implements Mapper<LongWritable, Text, Text, IntWritable> {

 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();

 public void map(LongWritable key, Text value,
 OutputCollector<Text, IntWritable> output,
 Reporter reporter) throws IOException {
 String line = value.toString();
 StringTokenizer itr = new StringTokenizer(line);
 while (itr.hasMoreTokens()) {
 word.set(itr.nextToken());
 output.collect(word, one);
 }
 }
 }

Example: Wordcount Reducer

 public static class Reduce extends MapReduceBase
 implements Reducer<Text, IntWritable, Text, IntWritable> {

 public void reduce(Text key, Iterator<IntWritable> values,

 OutputCollector<Text, IntWritable> output,

 Reporter reporter) throws IOException {

 int sum = 0;

 while (values.hasNext()) {

 sum += values.next().get();

 }

 output.collect(key, new IntWritable(sum));

 }

 }

Input and Output Formats

•  A Map/Reduce may specify how it’s input is to be read
by specifying an InputFormat to be used
–  InputSplit
–  RecordReader

•  A Map/Reduce may specify how it’s output is to be
written by specifying an OutputFormat to be used

•  These default to TextInputFormat and
TextOutputFormat, which process line-based text data

•  SequenceFile: SequenceFileInputFormat and
SequenceFileOutputFormat

•  These are file-based, but they are not required to be

Configuring a Job

•  Jobs are controlled by configuring JobConf
•  JobConfs are maps from attribute names to string value
•  The framework defines attributes to control how the job

is executed.
conf.set(“mapred.job.name”, “MyApp”);

•  Applications can add arbitrary values to the JobConf
conf.set(“my.string”, “foo”);
conf.setInteger(“my.integer”, 12);

•  JobConf is available to all of the tasks

Putting it all together

•  Create a launching program for your application
•  The launching program configures:

–  The Mapper and Reducer to use
–  The output key and value types (input types are

inferred from the InputFormat)
–  The locations for your input and output
–  Optionally the InputFormat and OutputFormat to use

•  The launching program then submits the job
and typically waits for it to complete

Putting it all together

public class WordCount {
……
public static void main(String[] args) throws IOException {
 JobConf conf = new JobConf(WordCount.class);
 conf.setJobName("wordcount");

 // the keys are words (strings)
 conf.setOutputKeyClass(Text.class);
 // the values are counts (ints)
 conf.setOutputValueClass(IntWritable.class);

 conf.setMapperClass(MapClass.class);
 conf.setReducerClass(Reduce.class);
 conf.setInputPath(new Path(args[0]);
 conf.setOutputPath(new Path(args[1]);
 JobClient.runJob(conf);
…..

Non-Java Interfaces

•  Streaming
•  Pipes (C++)
•  Pig
•  Hive
•  Jaql
•  Cascading
•  …

Streaming

•  What about Unix hacks?
–  Can define Mapper and Reduce using Unix text filters
–  Typically use grep, sed, python, or perl scripts

•  Format for input and output is: key \t value \n
•  Allows for easy debugging and experimentation
•  Slower than Java programs

bin/hadoop jar hadoop-streaming.jar -input in-dir -output out-dir
 -mapper streamingMapper.sh -reducer streamingReducer.sh

•  Mapper: /bin/sed -e 's| |\n|g' | /bin/grep .
•  Reducer: /usr/bin/uniq -c | /bin/awk '{print $2 "\t" $1}'

Pipes (C++)

•  C++ API and library to link application with
•  C++ application is launched as a sub-process of the Java task
•  Keys and values are std::string with binary data
•  Word count map looks like:

class WordCountMap: public HadoopPipes::Mapper {
public:
 WordCountMap(HadoopPipes::TaskContext& context){}
 void map(HadoopPipes::MapContext& context) {
 std::vector<std::string> words =
 HadoopUtils::splitString(context.getInputValue(), " ");
 for(unsigned int i=0; i < words.size(); ++i) {
 context.emit(words[i], "1");
 }}};

Pipes (C++)

•  The reducer looks like:
class WordCountReduce: public HadoopPipes::Reducer {
public:
 WordCountReduce(HadoopPipes::TaskContext& context){}
 void reduce(HadoopPipes::ReduceContext& context) {
 int sum = 0;
 while (context.nextValue()) {
 sum += HadoopUtils::toInt(context.getInputValue());
 }
 context.emit(context.getInputKey(),

HadoopUtils::toString(sum));
 }
};

Pipes (C++)

•  And define a main function to invoke the tasks:
int main(int argc, char *argv[]) {
 return HadoopPipes::runTask(
 HadoopPipes::TemplateFactory<WordCountMap,
 WordCountReduce, void,
 WordCountReduce>());
}

Pig – Hadoop Sub-project

•  Scripting language that generates Map/Reduce jobs
•  User uses higher level operations

–  Group by
–  Foreach

•  Word Count:
input = LOAD ’in-dir' USING TextLoader();
words = FOREACH input GENERATE

FLATTEN(TOKENIZE(*));
grouped = GROUP words BY $0;
counts = FOREACH grouped GENERATE group,

COUNT(words);
STORE counts INTO ‘out-dir’;

Hive – Hadoop Sub-project

•  SQL-like interface for querying tables stored as flat-files
on HDFS, complete with a meta-data repository

•  Developed at Facebook
•  In the process of moving from Hadoop contrib to a

stand-alone Hadoop sub-project

How many Maps and Reduces

•  Maps
–  Usually as many as the number of HDFS blocks being

processed, this is the default
–  Else the number of maps can be specified as a hint
–  The number of maps can also be controlled by specifying the

minimum split size
–  The actual sizes of the map inputs are computed by:

•  max(min(block_size, data/#maps), min_split_size)

•  Reduces
–  Unless the amount of data being processed is small

•  0.95*num_nodes*mapred.tasktracker.reduce.tasks.maximum

Performance Example

•  Bob wants to count lines in text files totaling several
terabytes

•  He uses
–  Identity Mapper (input: text, output: same text)
–  A single Reducer that counts the lines and outputs the total

•  What is he doing wrong ?
•  This happened, really !

–  I am not kidding !

Some handy tools

•  Partitioners
•  Combiners
•  Compression
•  Counters
•  Speculation
•  Zero reduces
•  Distributed File Cache
•  Tool

Partitioners

•  Partitioners are application code that define how keys
are assigned to reduces

•  Default partitioning spreads keys evenly, but randomly
–  Uses key.hashCode() % num_reduces

•  Custom partitioning is often required, for example, to
produce a total order in the output
–  Should implement Partitioner interface
–  Set by calling conf.setPartitionerClass(MyPart.class)
–  To get a total order, sample the map output keys and pick

values to divide the keys into roughly equal buckets and use
that in your partitioner

Combiners

•  When maps produce many repeated keys
–  It is often useful to do a local aggregation following the map
–  Done by specifying a Combiner
–  Goal is to decrease size of the transient data
–  Combiners have the same interface as Reduces, and often are

the same class.
–  Combiners must not have side effects, because they run an

indeterminate number of times.
–  In WordCount, conf.setCombinerClass(Reduce.class);

Compression

•  Compressing the outputs and intermediate data will often yield
huge performance gains
–  Can be specified via a configuration file or set programatically
–  Set mapred.output.compress to true to compress job output
–  Set mapred.compress.map.output to true to compress map outputs

•  Compression Types (mapred.output.compression.type) for
SequenceFiles
–  “block” - Group of keys and values are compressed together
–  “record” - Each value is compressed individually
–  Block compression is almost always best

•  Compression Codecs (mapred(.map)?.output.compression.codec)
–  Default (zlib) - slower, but more compression
–  LZO - faster, but less compression

Counters

•  Often Map/Reduce applications have countable events
•  For example, framework counts records in to and out of

Mapper and Reducer
•  To define user counters:

static enum Counter {EVENT1, EVENT2};
reporter.incrCounter(Counter.EVENT1, 1);

•  Define nice names in a MyClass_Counter.properties file
CounterGroupName=My Counters
EVENT1.name=Event 1
EVENT2.name=Event 2

Speculative execution

•  The framework can run multiple instances of slow tasks
–  Output from instance that finishes first is used
–  Controlled by the configuration variable

mapred.speculative.execution
–  Can dramatically bring in long tails on jobs

Zero Reduces

•  Frequently, we only need to run a filter on the input data
–  No sorting or shuffling required by the job
–  Set the number of reduces to 0
–  Output from maps will go directly to OutputFormat and disk

Distributed File Cache

•  Sometimes need read-only copies of data on the local
computer.
–  Downloading 1GB of data for each Mapper is expensive

•  Define list of files you need to download in JobConf
•  Files are downloaded once per a computer
•  Add to launching program:

DistributedCache.addCacheFile(new URI(“hdfs://nn:8020/foo”), conf);

•  Add to task:
Path[] files = DistributedCache.getLocalCacheFiles(conf);

Tool

•  Handle “standard” Hadoop command line options:
–  -conf file - load a configuration file named file
–  -D prop=value - define a single configuration property prop

•  Class looks like:
public class MyApp extends Configured implements Tool {
 public static void main(String[] args) throws Exception {
 System.exit(ToolRunner.run(new Configuration(),
 new MyApp(), args));
 }
 public int run(String[] args) throws Exception {
 …. getConf() …
 }
}

Debugging & Diagnosis

•  Run job with the Local Runner
–  Set mapred.job.tracker to “local”
–  Runs application in a single process and thread

•  Run job on a small data set on a 1 node cluster
–  Can be done on your local dev box

•  Set keep.failed.task.files to true
–  This will keep files from failed tasks that can be used for

debugging
–  Use the IsolationRunner to run just the failed task

•  Java Debugging hints
–  Send a kill -QUIT to the Java process to get the call stack,

locks held, deadlocks

Profiling

•  Set mapred.task.profile to true
•  Use mapred.task.profile.{maps|reduces}
•  hprof support is built-in
•  Use mapred.task.profile.params to set options

for the debugger
•  Possibly use DistributedCache for the profiler’s

agent

Jobtracker front page

Job counters

Task status

Drilling down

Drilling down -- logs

Performance

•  Is your input splittable?
–  Gzipped files are NOT splittable
–  Use compressed SequenceFiles

•  Are partitioners uniform?
•  Buffering sizes (especially io.sort.mb)
•  Can you avoid Reduce step?
•  Only use singleton reduces for very small data

–  Use Partitioners and cat to get a total order

•  Memory usage
–  Please do not load all of your inputs into memory!

Q&A

•  For more information:
– Website: http://hadoop.apache.org/core
– Mailing lists:

•  general@hadoop.apache.org
•  core-dev@hadoop.apache.org
•  core-user@hadoop.apache.org

–  IRC: #hadoop on irc.freenode.org

