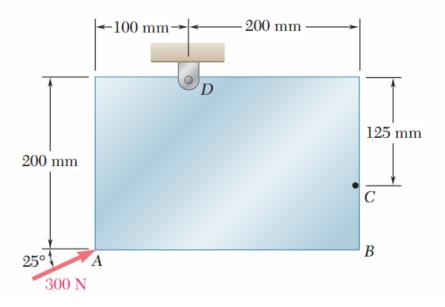

ME 2120 Recitation 3

Questions Taken from 9th Edition

Useful Equations


$$sin\theta = \frac{opposite}{hypotenuse} \quad cos\theta = \frac{adjacent}{hypotenuse} \quad tan\theta = \frac{opposite}{adjacent}$$
$$\Delta x = x_f - x_0 \quad \Delta y = y_f - y_0 \quad \Delta z = z_f - z_0$$
$$\vec{r} = \Delta x\vec{i} + \Delta y\vec{j} + \Delta z\vec{k}$$
$$M = \vec{r} x\vec{F}$$

$$\sum F = 0 \qquad \sum F_x = 0 \qquad \sum F_y = 0 \qquad \sum F_z = 0$$
$$\sum M = 0$$

3.3 A 300-N force is applied at A as shown. Determine (a) the moment of the 300-N force about D, (b) the smallest force applied at B that creates the same moment about D.

3.21 A 200-N force is applied as shown to the bracket ABC. Determine the moment of the force about A.

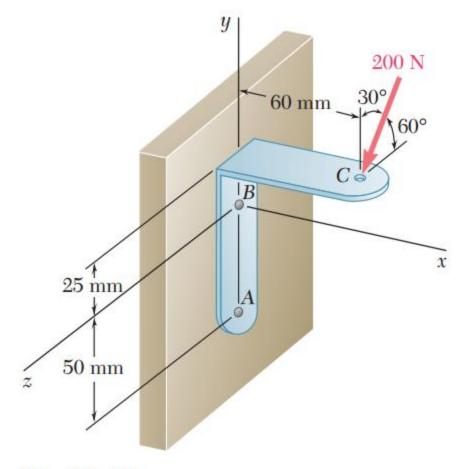
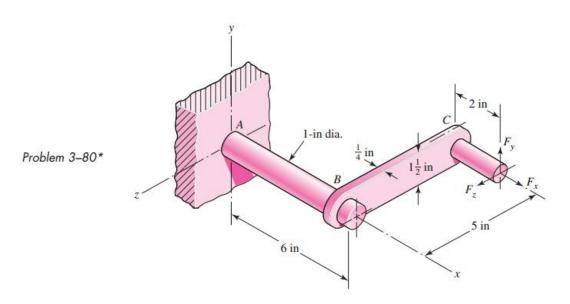



Fig. P3.21

- **3-80*** The cantilevered bar in the figure is made from a ductile material and is statically loaded with $F_y = 200$ lbf and $F_x = F_z = 0$.
- **3–81*** Repeat Prob. 3–80 with $F_x = 0$, $F_y = 175$ lbf, and $F_z = 100$ lbf.
- **3–82*** Repeat Prob. 3–80 with $F_x = 75$ lbf, $F_y = -200$ lbf, and $F_z = 100$ lbf.

