ME 2120 Recitation 1

Useful Equations

$$sin\theta = \frac{opposite}{hypotenuse}$$

$$cos\theta = \frac{adjacent}{hypotenuse}$$

$$tan\theta = \frac{opposite}{adjacent}$$

$$\Delta x = x_f - x_0$$

$$\Delta y = y_f - y_0$$

$$\Delta z = z_f - z_0$$

$$\sum F = 0$$

$$\sum F_x = 0$$

$$\sum F_y = 0$$

$$\sum F_z = 0$$

$$\sum M = 0$$

$$\sum F_{y}=0$$

$$\sum F_z = 0$$

$$\sum M = 0$$

- **2.2** Two forces **P** and **Q** are applied as shown at point A of a hook support. Knowing that P = 60 lb and Q = 25 lb, determine graphically the magnitude and direction of their resultant.
 - **2.15** Solve Prob. 2.2 by trigonometry.

Fig. P2.1 and P2.2

2.7 Two forces are applied as shown to a hook support. Knowing that the magnitude of \mathbf{P} is 35 N, determine by trigonometry (a) the required angle α if the resultant \mathbf{R} of the two forces applied to the support is to be horizontal, (b) the corresponding magnitude of \mathbf{R} .

Fig. P2.7

2.36 Knowing that the tension in cable BC is 725 N, determine the resultant of the three forces exerted at point B of beam AB.

Fig. P2.36

2.130 Two cables are tied together at C and loaded as shown. Determine the tension (a) in cable AC, (b) in cable BC.

Fig. P2.130