CHAPTER 4:
IMPERFECTIONS IN SOLIDS (Defects)

ISSUES TO ADDRESS...

• What types of defects arise in solids?

• Can the number and type of defects be varied and controlled?

• How do defects affect material properties?

• Are defects desirable or undesirable?
TYPES OF IMPERFECTIONS

- Vacancy atoms
- Interstitial atoms
- Substitutional atoms
- Dislocations
- Grain Boundaries

Point defects

Line defects

Area defects
POINT DEFECTS

- **Vacancies**: vacant atomic sites in a structure.
- **Self-Interstitials**: "extra" atoms positioned between atomic sites.
Point Defects: Vacancies and Interstitials

- Vacancy: Missing Atom
- Interstitial: Extra atom inside lattice
Point Defect: Foreign atom, (impurity, dopant, solute)

Can be

• Substitutional (occupying lattice site)
• Interstitial

Often depends upon relative sizes
Quantitative Calculation of Point Defects

- Point Defects increase randomness in crystals, and therefore, “Entropy”.

- To maximize entropy, all crystals will have an equilibrium concentration of point defects for thermodynamic reasons

- This concentration can be deduced from thermodynamic principles
EQUILIBRIUM CONCENTRATION OF POINT DEFECTS

Boltzmann's constant

\(\frac{N_D}{N} = \exp \left(\frac{-Q_D}{kT} \right) \)

- No. of defects
- Activation energy
- Temperature

No. of potential defect sites.

Each lattice site is a potential vacancy site.

Boltzmann's constant

- \(1.38 \times 10^{-23} \text{ J/atom K} \)
- \(8.62 \times 10^{-5} \text{ eV/atom K} \)
MEASURING ACTIVATION ENERGY

• We can get Q from an experiment.

• Measure this...

\[
\frac{N_D}{N} = \exp\left(\frac{-Q_D}{kT}\right)
\]

• Replot it...

\[
\ln\frac{N_D}{N}
\]

defect concentration
ESTIMATE VACANCY CONC.

- Find the equil. # of vacancies in 1m3 of Cu at 1000C.
- Given:
 \[\rho = 8.4 \text{ g/cm}^3 \quad A_{\text{Cu}} = 63.5\text{g/mol} \]
 \[Q_V = 0.9\text{eV/atom} \quad N_A = 6.02 \times 10^{23} \text{ atoms/mole} \]
ESTIMATING VACANCY CONC.

- Find the equil. # of vacancies in 1m³ of Cu at 1000°C.

- Given:
 \(\rho = 8.4 \text{ g/cm}^3 \quad \text{ACu} = 63.5 \text{g/mol} \)
 \(Q_V = 0.9 \text{eV/atom} \quad N_A = 6.02 \times 10^{23} \text{ atoms/mole} \)

\[
\frac{N_D}{N} = \exp\left(-\frac{Q_D}{kT}\right) = 2.7 \cdot 10^{-4}
\]

For 1m³, \(N = \rho \times \frac{N_A}{\text{ACu}} \times 1\text{m}³ = 8.0 \times 10^{28} \text{ sites} \)

- Answer:
 \(N_D = 2.7 \cdot 10^{-4} \cdot 8.0 \times 10^{28} \text{ sites} = 2.2 \times 10^{25} \text{ vacancies} \)
Two outcomes if impurity (B) added to host (A):

- **Solid solution** of B in A (i.e., random dist. of point defects)

- Solid solution of B in A plus particles of a new phase (usually for a larger amount of B)

Substitutional solid soln. (e.g., Cu in Ni)

Interstitial solid soln. (e.g., C in Fe)

Second phase particle -- different **composition**

-- often different structure.
Conditions for substitutional solid solution (S.S.)

- **W. Hume – Rothery rule**
 - 1. Δr (atomic radius) < 15%
 - 2. Proximity in periodic table
 - i.e., similar electronegativities
 - 3. Same crystal structure for pure metals
 - 4. Valency
 - All else being equal, a metal will have a greater tendency to dissolve a metal of higher valency than one of lower valency
Imperfections in Metals (iii)

Application of Hume-Rothery rules – Solid Solutions

1. Would you predict more Al or Ag to dissolve in Zn?

2. More Zn or Al in Cu?

<table>
<thead>
<tr>
<th>Element</th>
<th>Atomic Radius (nm)</th>
<th>Crystal Structure</th>
<th>Electronegativity</th>
<th>Valence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>0.1278</td>
<td>FCC</td>
<td>1.9</td>
<td>+2</td>
</tr>
<tr>
<td>C</td>
<td>0.071</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>0.046</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>0.060</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ag</td>
<td>0.1445</td>
<td>FCC</td>
<td>1.9</td>
<td>+1</td>
</tr>
<tr>
<td>Al</td>
<td>0.1431</td>
<td>FCC</td>
<td>1.5</td>
<td>+3</td>
</tr>
<tr>
<td>Co</td>
<td>0.1253</td>
<td>HCP</td>
<td>1.8</td>
<td>+2</td>
</tr>
<tr>
<td>Cr</td>
<td>0.1249</td>
<td>BCC</td>
<td>1.6</td>
<td>+3</td>
</tr>
<tr>
<td>Fe</td>
<td>0.1241</td>
<td>BCC</td>
<td>1.8</td>
<td>+2</td>
</tr>
<tr>
<td>Ni</td>
<td>0.1246</td>
<td>FCC</td>
<td>1.8</td>
<td>+2</td>
</tr>
<tr>
<td>Pd</td>
<td>0.1376</td>
<td>FCC</td>
<td>2.2</td>
<td>+2</td>
</tr>
<tr>
<td>Zn</td>
<td>0.1332</td>
<td>HCP</td>
<td>1.6</td>
<td>+2</td>
</tr>
</tbody>
</table>

Table on p. 118, *Callister & Rethwisch 8e.*
Impurities in Solids

Specification of composition

- **weight percent**
 \[C_1 = \frac{m_1}{m_1 + m_2} \times 100 \]

 \(m_1 = \text{mass of component 1} \)

- **atom percent**
 \[C'_1 = \frac{n_{m1}}{n_{m1} + n_{m2}} \times 100 \]

 \(n_{m1} = \text{number of moles of component 1} \)
COMPOSITION

Definition: Amount of impurity (B) and host (A) in the system.

Two descriptions:

- **Weight %**

 \[C_B = \frac{\text{mass of B}}{\text{total mass}} \times 100 \]

- **Atom %**

 \[C'_B = \frac{\# \text{ atoms of B}}{\text{total # atoms}} \times 100 \]

- **Conversion between wt % and at% in an A-B alloy:**

 \[C_B = \frac{C'_B A_B}{C'_A A_A + C'_B A_B} \times 100 \]

- **Basis for conversion:**

 - mass of B = moles of B \times A_B
 - mass of A = moles of A \times A_A

 \[C'_B = \frac{C_B/A_B}{C_A/A_A + C_B/A_B} \]

 atomic weight of B

 atomic weight of A

Mukhopadhyay...ME370
A certain mass of alloy contains 33g of Cu and 47g of Zn
Atomic Wt. of Cu is 63.55 and Zn is 65.39

Calculate atomic composition.
Likewise, for Zn

\[
n_{m_{\text{Zn}}} = \frac{47 \text{ g}}{65.39 \text{ g/mol}} = 0.719 \text{ mol}
\]

Now, use of Equation (4.5) yields

\[
C_{\text{Cu}}' = \frac{n_{m_{\text{Cu}}}}{n_{m_{\text{Cu}}} + n_{m_{\text{Zn}}}} \times 100
\]

\[
= \frac{0.519 \text{ mol}}{0.519 \text{ mol} + 0.719 \text{ mol}} \times 100 = 41.9 \text{ at%}
\]

Also,

\[
C_{\text{Zn}}' = \frac{0.719 \text{ mol}}{0.519 \text{ mol} + 0.719 \text{ mol}} \times 100 = 58.1 \text{ at%}
\]
Alloy has 5 at% Cu and 95 at% Pt
Atomic weights are: Cu – 63.55; Pt – 195.08

Calculate wt% of this alloy
\[
C_{Cu} = \frac{C'_{Cu} A_{Cu}}{C'_{Cu} A_{Cu} + C'_{Pt} A_{Pt}} \times 100
\]
\[
= \frac{(5)(63.55 \text{ g/mol})}{(5)(63.55 \text{ g/mol}) + (95)(195.08 \text{ g/mol})} \times 100
\]
\[
= 1.68 \text{ wt%}
\]

\[
C_{Pt} = \frac{C'_{Pt} A_{Pt}}{C'_{Cu} A_{Cu} + C'_{Pt} A_{Pt}} \times 100
\]
\[
= \frac{(95)(195.08 \text{ g/mol})}{(5)(63.55 \text{ g/mol}) + (95)(195.08 \text{ g/mol})} \times 100
\]
\[
= 98.32 \text{ wt%}
\]
LINE DEFECTS: DISLOCATIONS

- are line defects,
- cause slip between crystal plane when they move,
- produce permanent (plastic) deformation.

Schematic of a Zinc (HCP):
- before deformation
- after tensile elongation

slip steps
Line Defects-Dislocations
Edge Dislocation

Figure 4.3 The atom positions around an edge dislocation; extra half-plane of atoms shown in perspective. (Adapted from A. G. Guy, *Essentials of Materials Science*, McGraw-Hill Book Company, New York, 1976, p. 153.)
Line Defects-Dislocations
Screw Dislocation

Figure 4.4 (a) A screw dislocation within a crystal. (b) The screw dislocation in (a) as viewed from above. The dislocation line extends along line AB. Atom positions above the slip plane are designated by open circles, those below by solid circles.

(Figure b from W. T. Read, Jr., Dislocations in Crystals, McGraw-Hill Book Company, New York, 1953.)
INCREMENTAL SLIP

• Dislocations slip planes *incrementally*...
• The dislocation line (the moving red dot)...
 ...separates slipped material on the left from unslipped material on the right.

Simulation of dislocation motion from left to right as a crystal is sheared.

(Courtesy P.M. Anderson)
BOND BREAKING AND REMAKING

- Dislocation motion requires the successive bumping of a half plane of atoms (from left to right here).
- Bonds across the slipping planes are broken and remade in succession.

Atomic view of edge dislocation motion from left to right as a crystal is sheared.

(Courtesy P.M. Anderson)
• Structure: close-packed planes & directions are preferred.

view onto two close-packed planes.

close-packed directions

close-packed plane (bottom) close-packed plane (top)
Dislocations and Crystal Structure

- Identify the closest packed Plane in FCC
- How many such planes are there in a given crystal?

- Identify the closest packed direction in FCC
- How many such directions are on each plane?
 [These together determine how many “slip systems” for dislocation to move]
Dislocations and Crystal Structure

- Identify the closest packed Plane in HCP
- How many such planes are there in a given crystal?

- Identify the closest packed direction in HCP
- How many such directions are on each plane?

[How many “slip systems” for dislocation to move? Compare to FCC]
Comparison among crystal structures:
FCC: many close-packed planes/directions;
HCP: only one plane, 3 directions;
BCC: none

Results of tensile testing.

Mg (HCP)

Al (FCC)
Grain boundaries:
- are boundaries between crystals.
- are produced by the solidification process, for example.
- have a change in crystal orientation across them.
- impede dislocation motion.

Schematic

Adapted from Fig. 4.7, Callister 6e.
Methods to Observe/Study Defects

- Point Defects are very subtle: Properties related to defects (such as electrical conductivity, density, optical properties etc.) need to be monitored.
- Line Defects related to ductility and plastic deformation in metals. Directly observable by Transmission Electron Microscopy.
- Grain Boundaries easier to observe by optical or scanning electron microscopy (discussed earlier).
Transmission Electron Microscope Image of Dislocations

Figure 4.6 A transmission electron micrograph of a titanium alloy in which the dark lines are dislocations. 51,450×. (Courtesy of M. R. Plichta, Michigan Technological University.)