Scaling up of Equal Channel Angular Pressing (ECAP) for the Production of Forging Stock

R. Srinivasan¹, B. Cherukuri², P.K. Chaudhury³

¹Professor and ²Graduate Student,
Mechanical and Materials Engineering Dept.
Wright State University, Dayton OH 45435

³formerly Chief Metallurgist, Intercontinental Manufacturing/
General Dynamics OTS
now with Orbital Sciences Corporation, Launch Systems Group,
3380 South Price Rd., Chandler AZ 85248

Presented at “NanoSPD3” the Third International Conference on Nanomaterials by Severe Plastic Deformation, Fukuoka, Japan, September 22-26, 2005
Acknowledgements

- US Department of Energy, Grant number DE-FC36-01ID14022

- Institutional partners:
 - Intercontinental Manufacturing/General Dynamics-OTS
 - Queen City Forge (Rob Mayer)
 - Edison Materials Technology Center (Percy Gros, David Swenson)
 - Oak Ridge National Laboratory (S. Viswanathan, Qingyou Han)

- Travel grant to this conference provided by the Research Council, Wright State University
Severe Plastic Deformation (SPD)

- SPD refers to a “new” class of mechanical deformation processes that imparts large plastic strains
 - ECAE/P, HPT, MAC, FSP, ARB …
- Strains of the order of 4 or greater have been shown to result in grain refinement to produce ultra-fine grained (UFG) microstructure
- Fine grain (< 10 μm) materials exhibit superplastic behavior at high temperatures and slow strain rates
- Ultrafine grain (UFG) materials would exhibit superplastic behavior at lower temperature and higher strain rate.
Potential Benefits of Ultrafine grain (UFG) Microstructures

- Processing
 - Lower secondary forming temperature
 - Lower load or pressure for forging and extrusion
 - Increased die life
 - Decreased tonnage requirement for presses
 - Increased material yield in forgings
 - Fewer intermediate steps in forging complex shapes
 - Nearer to net shape forgings \(\Rightarrow\) Reduced machining
 - Improved machinability

- Service
 - Higher strength and better fatigue properties with fine microstructure
 - Ability to design lighter components with ultrafine grain materials.
Very extensively investigated process

Route B_C (90° rotation between passes) produces equiaxed submicron size grains

Billet sizes from 10 mm to 50 mm cross section from a variety of materials (several Al alloys, steels, Mg alloys, Ti alloys)

$$\varepsilon = \left[\frac{2 \cot \left(\frac{\Phi}{2} + \frac{\Psi}{2} \right) + \Psi \csc \left(\frac{\Phi}{2} + \frac{\Psi}{2} \right)}{\sqrt{3}} \right]$$

Objectives

- Scale up the ECAP process
 - Increase cross section to produce “industrial” sizes
- Demonstrate benefits of using SPD-UFG stock material in hot forging
 - Decreased forging temperature
 - Improved hot forging metal flow
 - Reduced forging stock size
 - Energy savings
Scale-up to Large Cross Section

- Commercially available AA6061
 - 12.5, 50, and 100 mm (0.5, 2.0 and 4.0 inch) square cross section bars were annealed (500°C, 1hr, FC)
- ECAP Processing
 - Route B_c with 90, 105 and 120° angle dies

<table>
<thead>
<tr>
<th>Channel Size</th>
<th>Channel Angle</th>
<th>Channel Length</th>
<th>Final Billet Size</th>
<th>Accumulated Strain</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5 mm (WSU)</td>
<td>120°</td>
<td>65 mm</td>
<td>$12.5 \times 12.5 \times 50$ mm</td>
<td>Up to 6 passes with ~0.67/pass</td>
</tr>
<tr>
<td>50 mm (AFRL)</td>
<td>90°</td>
<td>200 mm</td>
<td>$50 \times 50 \times 150$ mm</td>
<td>Up to 4 passes with ~1.15/pass</td>
</tr>
<tr>
<td>100 mm (IMCO/GD)</td>
<td>105°</td>
<td>350 mm</td>
<td>$100 \times 100 \times 300$ mm</td>
<td>Up to 4 passes with ~0.89/pass</td>
</tr>
</tbody>
</table>
Scale-up to Large Cross Section

100-mm ECAE/P
Scale-up to Large Cross Section
Scale up to Large Cross Section
Hardness

![Graph showing relationship between accumulated strain and hardness (HRE)]

- Hardness (HRE)
- Accumulated strain
- 12.5 mm
- 50 mm
- 100 mm
Scale up to Large Cross Section
TEM Microstructure

(a) 12.5 mm, ε~4
(b) 50 mm, ε~3.2
(c) 100 mm, ε~3.5
Scale up to Large Cross Section Forging Studies

- Materials Used
 - ECAP
 - 50-mm, 90° die angle, 3 and 4 passes
 - 100-mm, 105° die angle 4 passes
 - Conventional extruded stock
 - Fine-grain cast stock – an alternative source for fine grained stock
- Hot Forging
 - Small forging – 50 mm ECAP, Extruded stock, and Fine-grain cast stock
 - Complex forging – 50 mm ECAP and Extruded stock
 - Large forging – 100 mm ECAP and Extruded stock
- Forging done at Intercontinental Mfg. (IMCO)/General Dynamics
Scale up to Large Cross Section
Forging Studies

Aft cargo door latch forging
“Small forging”

Landing gear door bracket
“Complex forging”

~ 125 mm

~ 100 mm
Scale up to Large Cross Section Forging Studies

50-mm 3-pass ECAP

Forged at 315°C (600°F) 100% stock size

Forged at 370°C (700°F) 85% stock

Conventional Forging

Extruded Stock Forged at 450°C (840°F)

Fine Grain Cast Stock Forged at 443°C (830 °F)

50% reduction in the flash
Scale up to Large Cross Section Forging Studies

First Hit

Second Hit

50-mm 4-pass ECAP forged at 360°C (680°F)

Defect ground off before second hit

Extruded stock forged at 410°C (770°F)
Scale up to Large Cross Section Forging Studies

100 mm 4-pass ECAP 315°C (600°F) 90% stock size

Conventional extruded stock 427°C (800°F) 100% stock size

50% reduction in material scrapped in the trimmed flash
Potential Energy Savings
Time to reach temperature

Temperature, (°C)

Time (hours)
Potential Energy Savings

Furnace gas consumption

![Graph showing the relationship between temperature and gas consumption for furnace, with different symbols for 100 mm, 150 mm, and 200 mm.]
Potential Energy Savings
Weighted Energy Savings

<table>
<thead>
<tr>
<th>Forging Temperature (°C)</th>
<th>Energy Savings (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>316</td>
<td>33.7</td>
</tr>
<tr>
<td>371</td>
<td>18.2</td>
</tr>
<tr>
<td>427</td>
<td>8.9</td>
</tr>
<tr>
<td>471</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>°F</th>
<th>°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>316</td>
</tr>
<tr>
<td>700</td>
<td>371</td>
</tr>
<tr>
<td>800</td>
<td>427</td>
</tr>
<tr>
<td>880</td>
<td>471</td>
</tr>
</tbody>
</table>
Assumptions
- 130 forging plants with an average production of 2 million lb/yr
- Assume material yield is 70%
 - SPD billets reduce scrap by 50%
- ~1800 BTU/lb for heating forging billet
- ~2200 BTU/lb for melting aluminum
- 4% loss as dross, with energy content of 55,000 BTU/lb

Scale-up to Large Cross Section Potential Energy Savings during Forging

<table>
<thead>
<tr>
<th></th>
<th>Energy (BTU/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Current Consumption</td>
</tr>
<tr>
<td>Heating</td>
<td>4.68E+11</td>
</tr>
<tr>
<td>Remelting</td>
<td>2.45E+11</td>
</tr>
<tr>
<td>Dross</td>
<td>2.45E+11</td>
</tr>
<tr>
<td>Total</td>
<td>9.58E+11</td>
</tr>
</tbody>
</table>

Projected saving 40.53%

Data from Dr. Qingyou Han, ORNL
Assumptions

- 130 forging plants with an average production of 910,000 kg/yr
- Assume material yield is 70%
 - SPD billets reduce scrap by 50%
- ~4200 kJ/kg for heating forging billet
- ~5100 kJ/kg for melting aluminum
- 4% loss as dross, with energy content of 128,000 kJ/kg

Scale-up to Large Cross Section
Potential Energy Savings during Forging

<table>
<thead>
<tr>
<th>Kg/year</th>
<th>Energy (J/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Current Consumption</td>
</tr>
<tr>
<td>US Aluminum Forging</td>
<td>1.18E+08</td>
</tr>
<tr>
<td>Current Scrap</td>
<td>5.06E+07</td>
</tr>
<tr>
<td>Reduced Scrap</td>
<td>2.53E+07</td>
</tr>
<tr>
<td></td>
<td>Total</td>
</tr>
</tbody>
</table>

Projected saving: 40.53%
Scale-up to Large Cross Section
Response to T6 Heat Treatment

Aging Time, (hours)

Hardness (HRE)

FG Cast
ECAP
Extruded

Solutionize 521°C (970°F) 3 hr Quench
Hold at RT for 36 hr
Age 177°C (350°F) up to 8 hr
Scale-up to Large Cross Section Properties of Forged Parts

<table>
<thead>
<tr>
<th>Stock Material</th>
<th>Forging Temp.</th>
<th>As Forged Hardness R_E</th>
<th>As Forged GS</th>
<th>T6 UTS MPa (Ksi)</th>
<th>T6 YS MPa (Ksi)</th>
<th>T6 Elong. %</th>
<th>T6 GS μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-inch 3P ECAE/P</td>
<td>393°C 740°F</td>
<td>14</td>
<td>5.8 μm</td>
<td>320 (46.5)</td>
<td>297 (43.1)</td>
<td>15.8</td>
<td>31 μm</td>
</tr>
<tr>
<td>4-inch 4P ECAE/P</td>
<td>315°C 600°F</td>
<td>31</td>
<td></td>
<td>319 (46.2)</td>
<td>297 (43.1)</td>
<td>17.7</td>
<td></td>
</tr>
<tr>
<td>Extruded</td>
<td>460°C 860°F</td>
<td>31</td>
<td>20 μm</td>
<td>305 (44.2)</td>
<td>283 (41.0)</td>
<td>16.2</td>
<td>32 μm</td>
</tr>
<tr>
<td>Fine Grain Cast</td>
<td>416°C 780°F</td>
<td>13</td>
<td>50 μm</td>
<td>282 (40.9)</td>
<td>275 (39.8)</td>
<td>19.7</td>
<td></td>
</tr>
<tr>
<td>Minimum Specifications</td>
<td></td>
<td></td>
<td></td>
<td>262 (38)</td>
<td>242 (35)</td>
<td>7.0</td>
<td></td>
</tr>
</tbody>
</table>

Properties and microstructure are as good or better than conventional materials.
Summary

- ECAP can be scaled up to produce “industrial” size billets and used as forging ingots
- SPD AA-6061 has “lived” up to the anticipated benefits
 - Lower forging temperatures
 - Decreased material usage
 - Up to 40% saving in energy used for forging
- Faster heat treatment after forging
- Properties and microstructure same or better than conventional materials.