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Overview

» Considerations when packaging MEMS
» Self-Assembly of MEMS
* Integration

MicroElectroMechanical Systems (MEMS)
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Packaging: Considerations

*Guided Light *Heat
*Optical Switch «Temperature Sensor

*Multiplexor IR detector

*Ambient Light

*UV, visible, IR detectors +Video Display
+CCD sensor «Scanning . I-(;eatt_
) Fiber Optics onducting
Glass/Quartz |[Vindow <Hermetic Seal Medium
oAli *Non-Insulating Package
«Pressure Alignment Hioh Th Ig g
P S i *Attachment 1gh Therma
ressure sensor *Bonding Conductivity Interface

*Sonic Transducer
Open Port to Sensor with

Force Transmission Medium o
«Contamination

*Encrustation
*Oxidation «Tube - Chip Interface
eHermetic Seal

*Micro to Macro ?, «Strain
Direct Contact & «Strain Gauge

*Fluid
*Chem-Bio Detector
*Medical Pressure Sensor

Plasg;
*Ambient Atmosphere tic Tupe

*«Chem-Bio Detector :
<Humidity Sensor *Micro Pump
Open Port to Sensor eLab on Chip
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Fabrication Sequence

Anneal Impurity
Doping
Surface Film )
Preparation Formation Lithography

m .._.4_ Etching

Subdice Inspection/Test

YT

Packagingi
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Mask Set

Final Test

Dicing
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Precision slices of semiconductor or ceramic wafers

100 pm wide cuts in Si with a diamond blade




Wire Bonding

« To connect electrical contacts on chip to package or other G
¢ Gold or Aluminum wires 25 um in diameter
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DIE BOND PAD
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Packaging

T~

Adhesive

Wirebonding
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Packaging

« Common Types of Packages
e Ceramic with brazed cap

* Molded

* Metal Can
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Microelectronic Packaging
Classifications

« As defined in the packaging text by Pecht, packaging is
done on five levels, each with its own requirements:

« Zero-level packaging — The die itself that includes
interconnections between different components on the die.

« Level 1 packaging — The die is put in a larger package
made of metal, ceramic, plastic, or other materials, and the
die is wired to the package.

« Level 2 packaging — Multiple chips are packaged together
into one module. This level of packaging is sometimes not
used or needed.

« Level 3 packaging — Several Level 1 and/or Level 2
packages, along with discrete circuit components, are
integrated into a circuit board, often with interconnections
printed on it.

« Level 4 packaging — Several circuit boards are integrated
together, along with associated power circuits, cooling, and
an enclosure, to create a fully packaged working product.
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O-level

» Wafer Bonding — massively parallel encapsulation

bonding areas

[capping wafer /
N - 4 ™

\
l , | | .
N N
\ ~ / \ ,/ ~_/
substrate

MEMS dewc encapsulations
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O-level

» Wafer Bonding Techniques

e 150-600°C oven
TOMNC ol
303°C oven (sulmctk: bond) capping wafer
. silicon capping wafer
e - o
silicon substrate: igh =
e .
| e | {Iﬂl silicon substrate
I | silicon substrate
solder reflow bonding
60-200°C oven for epoxy
room temperature
00-A0TC cven 200°C oven I
capping wafer
silicon capping wafer fusion capping wafer bonding
_~bond material
silicon substrate .
/‘ micro-heater.
mﬁ reaction forms bond silicon substrate
Localized Heater Bonding
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O-level

* Thin Film Encapsulation

¢ (1) Microstructure Fabrication, (2) Additional Sacrificial Layer, (3)
Encapsulation Layer, (4) Release of (2).

¢ Encapsulation Layer is either full of holes or “porous”
¢ A solid encapsulation can be use if sacrificial layer can be decomposed
or diffuse out of encapsulation.

partially torn-away
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Snwll MEMS Large MEMS.

Decompose Unity

Polysilicon
ring

Figure 4: a) HARPSS Polbysilicon ring gyroscope, bj afier dispensing Unity, c) afier encapsulation with Avarre! and thermall
decomposition, d) afier breaking the Avatrel cap, e, f close-up views, showing clean and intact device siructure.

fa) i
FZZ lnsulotor B Siibstrate SN Polysilicon

R Uity poly mer RIS Avatre] overcoat P. Monajemi et al., 2005

Decompose Unity @ 200-300 °C
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Level 2

Electronics Chip ElectronicssMEMS Wire Bond
Chi
Epoxy P Electronicss MEMS

Solder Bump

Intermediate Substrate or Circuit Board

Patterned Metal Interconnects

Laminated Film \ Electronics Chip
. . p .
- . -~ Intermediate Substrate . "
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Packaging: Examples

. FLUORO SILICONE DIE STAINLESS STEEL
Motorola MPX4080D series GELDECOATY METAL COVER
. - . . . \ EPOXY PLASTIC
piezoresistive differential ~ wire sow CASE
pressure sensor h 1
LEAD FRAME DIE
DIFFERENTIALIGAUGE ELEMENT BOND

M MOTOROLA INC.

Figure 3. Cross—Sectional Diagrams
(Not to Scale)

Open port to sensor and open port
with transmission medium.
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Packaging: Examples

Beam Aperiure Optical Fiber

K. Ishikawa et al., “An
Integrated Micro-Optical
System For Laser-to-Fiber
Active Alignment,” MEMS
2002.

v T v
Goid Bump Mavable V-groove

Micromirror

Mirror structure

500 um:
EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS) 17

DMD Packaging

CMOS m
G Plasma
undercut

Metal3

and Mirror

=

Passivation

T2/Bum-in activation
Window Water
break
TaTest | Passivation l l J

Figure from: Michael A. Mignardi, “From ICs To DMDs,” Tl Technical Journal, Jul-Sep, 1998, pp. 56-63.
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Self-Assembly

* Problem: Corner Cube
« Surface micro-machining creates planar structures. Reflector

* The assembly (lifting) of hinged micro-structures is
commonly used to achieve 3-D functionality.

¢ Current assembly methods are complex, difficult,
real-estate consuming, impractical, unreliable,
and/or not fit for commercial production.
» Solution -- Solder Self-Assembly:
¢ Simple, Compact, and Powerful
« Existing Processing Step
* No External Control Wiring

¢ Good Electrical, Mechanical, and Thermal
Connection

¢ Suited for Mass Production

77
Actuator Arrays =

18KU B _15KX 8&.7F BB1S
Example of self-assembly

using MEMS
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Solder Self-Assembly

During reflow Equilibrium Position

Hinged plate Molten solder,

Substrate Substrate
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Description of Solder Self-Assembly of MEMS

e The surface tension of molten solder is harnessed to pull micro-
structures together.

300 pum

(Top View) Free Plate

Fixed Plate solidified solder

285 um

Hinge

Substrate /

285 pum

’iﬁ_%

/
Stacked Polysilicon

(Side View)
Hinge Pin  Hinge Cap
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Description of Solder Self-Assembly of MEMS

The basic solder assembly element can be attached to larger structures.
« Known volumes of solder can be applied.

Manufactured
Solder Sphere

ml_

.B%r?k_x "_SBIgu".BB?

Micro-switch assembled with 8 mil Pb/Sn pp¢)ithographicall
37/63 manufactured solder spheres. Defined Solder
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Solder Self-Assembly
Examples

« Complex hinged structures and arrays can be created that were previously
unrealizable using standard micro-machining processes.

« The following examples were assembled using volumes of solder equivalent to 8 mil
diameter spheres.

<> 100pum woum € 0

Sy | 5-plate struEture
= Substrate
14 Hinged-Structure 2 Dipole Antennas
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Solder Self-Assembly
Examples

» Deposition & Microrobot Legs > B4 1 cccombled with volumes of

pure indium equivalent to a
sphere of diameter 15 um.

Outlines of
gold pads

Assembled with volumes of pure indium equivalent

to a sphere of diameter 37 xm.
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Solder Self-Assembly
Examples

» Solder self-assembled micro axial flow fan

4 mil 63Sn/37Pb
Solder Ball

SDA Rotary L.G.'&“ w
Motor

_______
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Solder Self-Assembly
Examples

» Fiber Optic Cable Gripper

Assembled with 8 mil 63Sn/37Pb manufactured solder spheres
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Polymer Self-Assembly Examples

Photoresist

Structures can also be assembled using deposited and patterned polymers -- in this case, AZP4620
positive photoresist, initially 20 um thick.
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Solder Shape Modeling Using Minimum
Surface Energy

Surface Evolver can be used to find the shape of molten solder in two stages:

4.60
---0--- 12 mil sphere
4.50 . 14 mil sphere
_ 4.40 72.2 degrees >
< =
T 430
B i b
é,
8 4204
<
& 410
3 G
4.00 g ©
. 64.3 degrees .0
3.90 - L o-”
..ﬂ__.[____a.
. 3.80 T T T T T T T
Stage 1 - One Solder J0|nt: 50 55 60 65 70 75 80 85 920
Fixed plate angle, fixed plate Angle Between Plates (degrees)
dimensions, fixed solder volume. Stage 2 -- Vary the plate angle only.
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IC Integration

* MEMS First
+ 1C fab is not compromised
+ Allows high temperature anneals
— Can result in difficult interconnects
— Complicates release
* IC First
+ 1C Fab is not compromised
+ Most expensive processing done first
— Limits processing temperatures and thus material choices
* Integrated Process
+ Fewest number of steps
— Greatest complexity
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Packaging

* Packaging
* Puts devices into an easily manipulated container

* Provides the system with the proper environmental
interaction

» Cost of Packaging is non-trivial
» often 70%-80% of total unit cost

* |C Packaging

* MEMS specific Packaging
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Packaging

Dicing & Pick & Wire
Separating Place Bonding

* Where do we release
» What about dust particles
* How do we seal
» Must maintain free motion
» What about access
* Optical or pressure interconnects
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Sealing
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Primary IC Issues

* Electrical Connectivity
* Interconnects
* RF?

* Reliability
o Au/Al

» Thermal Management
* Heat Sink/Fan

* Environment

o COSTIN!

e Automation
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