More Than Two Sample Hypothesis Testing Using the ANOVA Table

Source	Sum Squares	df	Mean Square	F Test	
Model(Factor)		<u>a - 1</u>			
Error		<u>a(n - 1)</u>			
Total		<u>an - 1</u>	Notes: a = number of tro n = number of ite	eatments ems per treatment	t

Null Hypothesis H₀: $\mu_1 = \mu_2 = = \mu_3 \dots = \mu_a$ Alternate Hypothesis H₁: At least one treatment is significantly different.

Critical Value: F Distribution Table F 0.05, dfnum, dfdenom

If Reject the Hull, conclude at least one treatment is significantly different.

If Fail to Reject, conclude no significant difference between treatments.

ANOVA Model - Sources of Variances

Data Table							
Group						Total	Average
А	16	18	10	12	19	75	15
В	4	6	8	10	2	30	6
С	2	10	9	13	11	45	9
					Grand =	150	10

Pick Y(1,5) = 19

Grand Mean = 10

Group A Mean = 15

Y = 19

Deviations

Y - Grand Mean = Total Deviations

Y - Group Mean = Within Group Deviations

Group Mean - Grand Mean = Between Groups Deviations

Variations

Sum of Squares Total = Sum of Squares Between + Sum Squares Within Sum of Squares Total = Sum of Squares Treatment + Sum Squares Errors SST = SSTreat + SSE

a = Number of Groupsn = Number of Items per Groupan = Total Number of Items

Source of Variation	Sum Squares	df	Mean Square
Treatment	SSTreat	a - 1	SSTreat / (a-1)
Error	SSE	a(n - 1)	SSE / [a(n - 1)]
Total	SST	an - 1	

Note: (a - 1) + a(n - 1) = a - 1 + an - a = an - 1

F Test = MSTreat / MSE