Course Notes:

Use Standard Normal Distribution Table or Excel Normal Distribution Functions (see below) to determine:
$\mathrm{P}\left(\mathrm{Z}_{\mathrm{a}}<\mathrm{Z}<\mathrm{Z}_{\mathrm{b}}\right)$
z given the probability of $P(Z<z)=$ probability p
z given the probability of $P(Z>z)=$ probability p
Given: Normal Distribution with Mean μ, Standard Deviation σ
Apply Z-Score, using the $Z=\frac{X-\mu}{\sigma}$ equation as appropriate.
Find: $\mathrm{P}(\mathrm{a}<\mathrm{X}<\mathrm{b})$
Find: x given $\mathrm{P}(\mathrm{X}<\mathrm{x})=$ probability p
Find: x given $\mathrm{P}(\mathrm{X}>\mathrm{x})=$ probability p
Solve engineering problems using the above techniques.
Answer concept questions related to Normal Probability Distributions.

Course Activities:

The following activities will preferably be completed using the MS Excel formulas/functions: or a similar electronic spreadsheet.

STANDARDIZE, Z.TEST, NORM.DIST, NORM.INV, NORM.S.DIST, MORM.S.INV

References:

Standard Normal Distribution Table (Z Table)
http://www.stat.ufl.edu/~athienit/Tables/Ztable.pdf

Excel Normal Distribution Functions

Z - Score

STANDARDIZE (X, μ, σ)
Given a Normal Distribution with Mean μ, Standard Deviation σ, and some value X; Find $Z=\frac{X-\mu}{\sigma}$
Example: Normal Distribution Mean $u=125$, Standard Deviation $\sigma=15, \mathrm{X}=150$
$=\operatorname{STANDARDIZE}(150,125,15)=1.67$
Standard Normal Z Distribution (Mean $u=0$ and Standard Deviation $\sigma=1$)
NORM.S.DIST(Z, True/False)
Find $P(Z<z)$, given z.
Example: $\mathrm{z}=1.50$
$=$ NORM.S.DIST(1.50) $=0.9332$

Normal Distribution

NORM.DIST(X, μ, σ, True/False)
If True, returns Cumulative Distribution Function P(X); i.e., integral from negative infinity to x .
Example: $u=125, \sigma=15, X=150$, True
$=\operatorname{NORM} \cdot \operatorname{DIST}(150,125,15$, True $)=0.9521$
Note: This is the same as $\mathrm{P}(\mathrm{Z})=\mathrm{P}\left(Z=\frac{x-\mu}{\sigma}\right)=\mathrm{P}([150-125] / 15)=\mathrm{P}(1.667)=0.9522$
Note: If $\mu=0$ and $\sigma=1$, this is the same as the Standard Normal Z Distribution see above NORM.S.DIST

If False, returns the probability mass function

$$
f(x ; \mu, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\left(\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)}
$$

Example: $u=125, \sigma=15, X=150$, False
$=$ NORM.DIST $(150,125,15$, False $)=0.0066$ Note: We will not use this function.

Z Inverse (Standard Normal Distribution)

NORM.S.INV(probability)
Find z , given $\mathrm{P}(\mathrm{Z}<\mathrm{z})=$ probability p .
Example: $\mathrm{P}(\mathrm{Z}<\mathrm{z})=0.9522$
$=\operatorname{NORM} \cdot \operatorname{S.INV}(0.9522)=1.667$
Example: $\mathrm{P}(\mathrm{Z}<\mathrm{z})=0.0808$
$=$ NORM.S.INV $(0.0808)=-1.40$

Z Inverse (Normal Distribution)

NORM.INV(probability, μ, σ)
Given a Normal Distribution with Mean μ, Standard Deviation σ, and probability p.
where $Z=\frac{X-\mu}{\sigma}$, Find X such that $\mathrm{P}(\mathrm{X}<\mathrm{x})=\mathrm{p}$
Example: $p=0.8413 \mu=100 \sigma=25$
$=$ NORM.INV $(0.8413,100,25)=125$
Example: $p=0.1131 \mu=100 \sigma=25$
$=\operatorname{NORM} \cdot \operatorname{INV}(0.1131,100,25)=69.8 \quad$ Note: $Z=-1.21$ from Table
Note:
$\mathrm{P}(\mathrm{a}<\mathrm{X}<\mathrm{b})=\mathrm{P}(\mathrm{X}<\mathrm{b})-\mathrm{P}(\mathrm{X}<\mathrm{a})$
$\mathrm{P}(\mathrm{Z}>\mathrm{z})=1-\mathrm{P}(\mathrm{Z}<\mathrm{z})$
Be aware there will be some small rounding errors.

