ISE 2211 Statistics for Engineers

Homework \#2 - Chapter 2 Probability (Montgomery \& Runger, 6ed)

Problems:
Answers to odd-numbered problems can be found in Appendix B.
Answers to even-numbered problems are provided below.

2-2 Axioms and Laws of Probability

Page 34, Problems 2-65, 67, 70, 71
2-3 Addition Rule
Pages 38-39, Problems 2-82, 83, 85, 87
2-4 Conditional Probabilities
Pages 43-44, Problems 2-99, 105, 107, 109
2-5 Multiplication Rule
Page 48, Problems 2-121, 122, 125, 127, 129 Correction 2-129 b) 0.078
2-6 Independence
Pages 52-53, Problems 2-142, 144, 146, 147, 149

Answers:

2-70
a) 0.86
b) 0.79
c) 0.14
d) 0.70
e) 0.95
f) 0.84

2-82
a) 0.7
b) 0.4
c) 0.1
d) 0.2
e) 0.6
f) 0.8

2-122
0.22

2-142 No
If A and B are independent, then $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{A})$.
Since $P(A \mid B)=0.4$ and $P(A)=0.5$, A and B are not independent.
2-144 No
If A and B are mutually exclusive, then $\mathrm{P}(\mathrm{A} A N D \mathrm{~B})=0$.
If A and B are independent, then $\mathrm{P}(\mathrm{A} A N D B)=\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B})$.
Since $P(A) \times P(B)=0.2 \times 0.2=0.04 \neq 0, A$ and B are not independent.
2-146 No
If A and B are independent, then $\mathrm{P}(\mathrm{A} A N D \mathrm{~B})=\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B})$.
$\mathrm{P}(\mathrm{A} A N D B)=70 / 100=0.70$.
Since $\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B})=86 / 100 \times 79 / 100=0.68$, A and B are not independent.

