Normal Distribution and Central Limit Theorem

Confidence Intervals and Levels of Significance

		One-Tail	Two-Tail
Confidence Interval Level of Significance		\mathbf{Z}_{lpha}	$\mathbb{Z}_{\alpha/2}$
90 %	10 %	1.28	1.645
95	5	1.645	1.96
98	2	2.055	2.33
99	1	2.33	2.575

Central Limit Theorem

Given a Normal Distribution with Mean = μ , Variance = σ^2 , and Standard Deviation = σ , The Sampling Distribution of all possible Sample Means X of Sample Size n, is normally distributed with

 $Mean: \ \mu_{\overline{X}} = \mu \qquad \qquad Variance: \ \sigma_{\overline{X}}^{-2} = \sigma^2/n \qquad \qquad Standard \ Deviation: \ \ \sigma_{\overline{X}} = \sigma/\sqrt{n} \ .$

Hypothesis Testing

If population standard deviation (σ) is known, use Z_{test} regardless of sample size.

If population standard deviation (σ) is unknown, assume $\sigma = s$.

If sample size is $n \ge 30$, use Z_{test} ;

if sample size is n < 30, use *t* test.

Note: Montgomery & Runger suggest that sample size n = 40 is the appropriate large sample criteria.

$$Z_{test} = \frac{\overline{X} - \mu}{s / \sqrt{n}} \qquad \qquad t_{test} = \frac{\overline{X} - \mu}{s / \sqrt{n}}$$

Margin of Error = $\frac{s}{\sqrt{n}} Z_{\alpha/2}$

Tolerance Interval

$$\mu = \overline{X} \pm \frac{\sigma}{\sqrt{n}} Z_{\alpha/2} \qquad \qquad \mu = \overline{X} \pm \frac{s}{\sqrt{n}} t_{\alpha/2}$$
$$\overline{X} - \frac{\sigma}{\sqrt{n}} Z_{\alpha/2} \le \mu \le \overline{X} + \frac{\sigma}{\sqrt{n}} Z_{\alpha/2} \qquad \qquad \overline{X} - \frac{s}{\sqrt{n}} t_{\alpha/2} \le \mu \le \overline{X} + \frac{s}{\sqrt{n}} t_{\alpha/2}$$

Minimum Sample Size = $\left[\frac{s Z_{\alpha/2}}{E}\right]^2$