Additional Normal Distribution Practice Problems

First, use either a Standard Normal Distribution (Z Table) or your calculator to solve the following problems. Then verify your answers using the Excel Normal Distribution Functions.

1. For a Standard Normal Distribution (i.e., Mean $\mu=0$ and Variance $\sigma^{2}=1$ Standard Deviation $\sigma=1$)

Find: Find:
$\mathrm{P}(\mathrm{Z}<1.43)$
$\mathrm{P}(\mathrm{Z}>1.43)$
$\mathrm{P}(\mathrm{Z}>-1.43)$
$\mathrm{P}(\mathrm{Z}<-1.43)$
$\mathrm{P}(-1.43<\mathrm{Z}<+1.37)$
Find z, such that
$\mathrm{P}(\mathrm{Z}<\mathrm{z})=0.98$
$\mathrm{P}(\mathrm{Z}>\mathrm{z})=0.98$
$\mathrm{P}(-1.37<\mathrm{Z}<+1.43)$
$\mathrm{P}(\mathrm{Z}<\mathrm{z})=0.02$
2. Normal Distribution Mean $=120$, Standard Deviation $=32$

Find:
$\mathrm{P}(\mathrm{X}<80)$
$\mathrm{P}(\mathrm{X}>160)$
$\mathrm{P}(80<\mathrm{X}<160)$
x such that $P(X<x)=50 \%$
x such that $P(X>x)=50 \%$
x such that $P(X<x)=25 \%$
x such that $P(X>x)=25 \%$
x such that $P(X>x)=98 \%$
x such that $\mathrm{P}(\mathrm{X}<\mathrm{x})=98 \%$
3. Assume the detection of a digital signal imbedded in background noise is normally distributed with mean = 2.70 volts and standard deviation $=0.45$ volts. If the signal level exceeds 3.60 volts, the system reports that a digital 1 has been transmitted. What is the probability of reporting a digital 1 if no digital signal was sent. Note: This is the probability of a false detection (false positive).

In simple terms, let $v=$ the voltage level, find $\mathrm{P}(v>3.60)$
Note: $Z=(v-\mu) / \sigma$; so $Z=(3.60-2.70) / 0.45=0.90 / 0.45=2.00$
$\mathrm{P}(v>3.60)=\mathrm{P}(\mathrm{Z}>2.00)=1-\mathrm{P}(\mathrm{Z}<2.00)=1-0.9772=0.0228$
So the probability of saying a digital signal 1 was sent when no digital signal was sent equals $0.0228 \approx 3 \%$
4. Assume the life of a semiconductor laser at constant power is normally distributed with mean of 7000 hours and a standard deviation of 600 hours.

What is the probability that a laser fails before 6000 hours?
$\mathrm{P}(\mathrm{X}<6000)=\mathrm{P}(\mathrm{Z}<[\mathrm{X}-\mu] / \sigma)=\mathrm{P}(\mathrm{Z}<[6000-7000] / 600)=\mathrm{P}(\mathrm{Z}<-1.67)=0.0475 \approx 5 \%$
What is the laser operating life (in hours) for which 95% of all laser are expected to exceed?
$\mathrm{P}(\mathrm{X}>\mathrm{x})=0.95$ which is the same as $\mathrm{P}(\mathrm{X}<\mathrm{x})=1-0.95=0.05$
Find z such that $\mathrm{P}(\mathrm{Z}<\mathrm{z})=0.05$ Answer $\mathrm{z}=-1.645$
and from $Z=(X-\mu) / \sigma$ we have $X=\mu+Z \sigma=7000+(-1.645) 600=7000-987=6013$ hours
What are the symmetrical lower and upper bounds on the 99% of laser operating life (in hours)?
Note: Since we are asked to find the symmetric lower and upper bounds $\mathrm{P}(-\mathrm{z}<\mathrm{Z}<+\mathrm{z})=0.99$;
z can be found by $P(Z<-z)=(1-0.99) / 2=0.005$; hence $z=-2.575$
And $X_{\text {Lower }}=\mu-|Z| \sigma=7000-(2.575)(600)=7000-1545=5455$
And $X_{\text {Upper }}=\mu+|Z| \sigma=7000+(2.575)(600=7000+1545=8545$
QED the 99% symmetrical bounds on the laser operating life is 5455 to 8545 hours.
Would you expect the 95% bounds to be wider or narrower than the 99% bounds?
Is this counter-intuitive?

Additional Normal Distribution Practice Problems (Answers)

1. For a Standard Normal Distribution (i.e., Mean $\mu=0$ and Variance $\sigma^{2}=1$ Standard Deviation $\sigma=1$)
$P(Z<1.43)=x$
$\mathrm{P}(\mathrm{Z}>1.43)=\mathrm{x}$
$P(Z>-1.43=x)$
$P(Z<-1.43)=x$
$\mathrm{P}(-1.43<\mathrm{Z}<+1.37)=\mathrm{x}$
$P(Z<z)=0.98 \quad z=+2.05$
$\mathrm{P}(-1.37<\mathrm{Z}<+1.43)=\mathrm{x}$
$\mathrm{P}(\mathrm{Z}>\mathrm{z})=0.98 \mathrm{z}=-2.05$
$\mathrm{P}(-1.43<\mathrm{Z}<-1.37)=\mathrm{x}$
$\mathrm{P}(\mathrm{Z}<-\mathrm{z})=0.98 \quad \mathrm{z}=-2.05$
$\mathrm{P}(+1.37<\mathrm{Z}<+1.43=\mathrm{x})$
$\mathrm{P}(\mathrm{Z}>-\mathrm{z})=0.98 \quad \mathrm{z}=+2.05$
2. Normal Distribution Mean $=120$, Standard Deviation $=32$

Find:
$\mathrm{P}(\mathrm{X}<80)=0.1056$
$\mathrm{P}(\mathrm{X}>160)=0.1056$
$\mathrm{P}(80<\mathrm{X}<120)=0.8944-0.1056=0.7888$
x such that $\mathrm{P}(\mathrm{X}<\mathrm{x})=50 \% \mathrm{x}=120.0$
x such that $P(X>x)=50 \% x=120.0$
x such that $\mathrm{P}(\mathrm{X}<\mathrm{x})=25 \% \mathrm{x}=98.4$
x such that $P(X>x)=25 \% \quad x=141.6$
x such that $P(X>x)=98 \% x=54.3$
x such that $\mathrm{P}(\mathrm{X}<\mathrm{x})=98 \% \mathrm{x}=185.7$

