Binomial Distribution

For practice, solve the follwing examples for the various values of $n, p, \& X$.

n	p	X	Prob
6	0.20	$\mathrm{X}=0$	0.2621
6	0.20	$\mathrm{X}=1$	0.3932
6	0.20	$\mathrm{X}<1$	0.2621
6	0.20	$\mathrm{X}<2$	0.6554
6	0.20	$\mathrm{X}>=2$	0.3446
7	0.10	$\mathrm{X}=2$	0.1240
7	0.10	$\mathrm{X}=3$	0.0230
6	0.05	$\mathrm{X}=0$	0.7351
6	0.05	$\mathrm{X}=1$	0.2321
5	0.15	$\mathrm{X}=1$	0.3915
5	0.15	$\mathrm{X}=2$	0.1382
5	0.20	$\mathrm{X}=3$	0.0512
5	0.20	$\mathrm{X}=2$	0.2048

Poisson Distribution

1. Suppose the arrival of cars at a toll booth follows a Poisson Process with an average of 1.8 cars per 10 seconds. What is the probability of no cars arriving in 10 seconds?
Answer $=0.1653$
2. Suppose the arrival of cars at a toll booth follows a Poisson Process with an average of 1.8 cars per 10 seconds. What is the probability of more than two cars arriving in 10 seconds?
Answer $=0.2694$
3. Suppose the arrival of cars at a toll booth follows a Poisson Process with an average of 1.8 cars per 10 seconds. What is the probability of no cars arriving in 20 seconds?
Answer $=0.0273$
