Note: The main focus of the Test Seven will be on Op-Amps configured as Comparators, Schmitt Triggers, Active Filters, and Differential Mode and Common Mode Operation (hilited in green). However, in order to answer op-amp questions and to solve op-amp problems, it is still necessary to be familiar with op-amp properties and characteristics.

Transistor Amplifiers and Oscillators

Amplifiers require negative feedback (180° out-of-phase) for circuit stability, high fidelity, wide bandwidth

Oscillators require *positive feedback* (in-phase) in order to sustain operation

Oscillators convert DC supply voltages to AC signals

Piezoelectric Effect (Crystal Control)

Common Emitter (BJT) Amplifiers

Low frequency cut-off due to coupling capacitors and by-pass capacitors

High frequency cut-off due internal junction capacitance and frequency dependence of β

Amplifier Gain (Generally expressed as Gain = Output / Input)

Gain Factors are defined for Voltage, Current, and Power

Voltage Gain is often expressed using slightly different symbology (α , A, A₀, A_{ν}).

Current Gain A_i

Power Gain A_p

Operational Amplifiers (Op-Amps)

Series of cascaded amplifiers:

differential amplifier, high gain voltage amplifier, low impedance output amplifier.

Characteristics of input and output impedance, voltage gain, bandwidth for an ideal op-amp:

high input impedance, low output impedance, high gain, wide bandwidth.

 $V_{\text{sat}} = V_{\text{CC}} \pm 2 \text{ volts}$ $+V_{\text{sat}} (\text{Max } V_{\text{out}}) = +V_{\text{cc}} - 2 \text{ V}$ $-V_{\text{sat}} (\text{Max } V_{\text{out}}) = -V_{\text{cc}} + 2 \text{ V}$

Basic Rule for Input Currents: $i^- = i^+ = 0$

Open Loop (no feedback): $V_{out} = A(v^+ - v^-)$ such that $V_{out} = V_{sat}$

Comparators: Protects against inadvertent output switching due to noisy input signals.

Closed Loop (positive feedback)

Schmitt Triggers: Bi-reference level comparator with positive feedback.

Closed Loop (negative feedback)

Basic Rule for Input Voltages: $v^- = v^+$

Gain:

Inverting (input to v- terminal) = $-Z_f/Z_i$

Non-Inverting (input to v+ terminal) = $1 + Z_f / Z_i$

Commonly used as summers, multipliers, differentiators, integrators; hence the name *operational amplifiers* (analog computers). Can also be configured as log and anti-log (exponentiation) amplifiers, active filters, unity buffers, comparators, Schmitt triggers, oscillators.

Differential Mode and Common Mode Operation

Differential Voltage $V_{DV} = v^+ - v^-$

Differential Gain $DG = |V_{out} / V_{DV}|$

Common Mode Voltage $V_{CMV} = (v^+ + v^-) / 2$

Common Mode Gain $CMG = |V_{out} / V_{CMV}|$

Common Mode Rejection Ratio CMRR = DG / CMG

CMRR dB = 20 log(DG/CMG)

Ideal CMG = 0 CMRR = ∞ Typical Values CMRR = $80dB = 10^4$

Signal Noise Ratio

 $SNR_{in} = V_{signal} / V_{noise}$

 $SNR_{out} = CMRR * SNR_{in}$

Operational Amplifiers Handouts and Op-Amp Problems

Operational Amplifier Active Filters

Calculate band pass gain and cut-off frequencies for low and high pass active filters with either non-inverting input or inverting inputs.

Comparators and Schmitt Triggers - Calculate V_{ref} voltages and describe the operation.