BME/ISE 3512

Bioelectronics - Test Four Review Notes

Course Notes: (BJTs pages 1, 2, 3, 4) *Note Correction on Page 1.* $\beta = \alpha / (1 - \alpha)$ and $\alpha = \beta / (1 + \beta)$ Characteristics Curves Biasing Circuits and Quiescent Operating Points Amplifier Configurations Electronic Switches

In-Class Exercise Problems:

BJT Biasing Problems Quiescent Operating Point DC Load Line, AC without Load, and AC with Load Analysis

Additional Homework Problems:

BJT Biasing Problems Emitter Biased, Common Emitter Emitter Biased, Common Emitter With Emitter Resistor Voltage-Divider Biased, Common Emitter Voltage-Divider Biased, Cascaded Amplifier Use the BJT Collector Characteristic Curves (IB, IC, & VCE) to determine circuit values for RB and RC

Ideas To Be Cognizant Of:

Synonymous Terms:

Quiescent Point (Operating Point) = $(I_{CQ} \text{ and } V_{CEQ})$ = Intersection of Load Line with Operating I_B

Definitions:

 $V_{CE \text{ cut-off}} = Value \text{ of } V_{CE} \text{ when } I_C = 0$

Generally, in all of the circuits we have analyzed in class, $V_{CE} = V_{CC}$

 $I_{C \text{ saturation}}$ or $I_{C \text{ sat}}$ = Maximum Value of I_{C} (occurs when $V_{CE} = 0$)

DC Load line: In general, slope of DC load line is set by the biasing resistors R_C and R_E Slope = -1/($R_E + R_C$)