Alternating Current

Capacitive \& Inductive Reactance and Complex Impedance
RC \& RL Circuit Analyses (DC Transients, Time Constants, Steady State)

Electrical Theory (Alternating Current)

Charge $\quad \mathrm{Q}=\mathrm{CV}$
Current $\quad \mathrm{I}=\mathrm{dQ} / \mathrm{dt}$
Ohm's Law for $\mathrm{AC} \quad \mathrm{I}_{\mathrm{RMS}}=$
$|\mathrm{Z}|=\left[\left(\mathrm{R}^{2}+(\mathrm{XL}-\mathrm{XC})^{2}\right]^{1 / 2}\right.$
$\theta=\tan ^{-1}[(\mathrm{XL}-\mathrm{XC}) / \mathrm{R}]$

Power Factor $\cos \theta=\mathrm{R} / \mathrm{Z}$
Joule's Law Average Power $=1 / 2 \mathrm{~V}_{\text {peak }} \mathrm{I}_{\text {peak }} \cos \theta=\mathrm{V}_{\text {RMS }} \mathrm{I}_{\text {RMS }} \cos \theta \quad$ Watts
$i=\mathrm{C} \mathrm{dv} / \mathrm{dt} \quad v=1 / \mathrm{C} \int \mathrm{i} \mathrm{dt}$
for $v=\mathrm{V}_{\mathrm{p}} \sin \omega \mathrm{t} \quad i=\mathrm{Cd}\left(\mathrm{V}_{\mathrm{p}} \sin \omega \mathrm{t}\right) / \mathrm{dt}=\omega \mathrm{CV}_{\mathrm{p}} \cos \omega \mathrm{t}=\omega \mathrm{CV}_{\mathrm{p}} \sin (\omega \mathrm{t}+\pi / 2)$
$v=\mathrm{L} \mathrm{di} / \mathrm{dt} \quad i=1 / \mathrm{L} \int \mathrm{v} \mathrm{dt}$
for $i=\mathrm{I}_{\mathrm{p}} \sin \omega \mathrm{t} \quad v=\mathrm{L} \mathrm{d}\left(\mathrm{I}_{\mathrm{p}} \sin \omega \mathrm{t}\right) / \mathrm{dt}=\omega \mathrm{L}_{\mathrm{p}} \cos \omega \mathrm{t}=\omega \mathrm{L} \mathrm{I}_{\mathrm{p}} \sin (\omega \mathrm{t}+\pi / 2)$
ELI the ICE man Component Voltage / Current
Resistor In Phase
Capacitor Lags Inductor Leads

Capacitive \& Inductive Reactance and Complex Impedance

$\omega=2 \pi f \quad f=0.159 \omega$
Capacitive Reactance $\mathrm{X}_{\mathrm{C}}=1 / \omega \mathrm{C}=1 /(2 \pi f \mathrm{C})=0.159 / f \mathrm{C}$
Inductive Reactance $\mathrm{X}_{\mathrm{L}}=\omega \mathrm{L}=2 \pi f \mathrm{~L}$
Complex Impedance
R in series with series $\mathrm{CL} \quad \mathrm{Z}=\mathrm{R}+\mathrm{j}(2 \pi f \mathrm{~L}-1 /(2 \pi f \mathrm{C})) \quad$ Impedance is a minimum at resonance
R in series with parallel $\mathrm{CL} \mathrm{Z}=\mathrm{R}+\mathrm{j}\left(2 \pi f \mathrm{~L} /\left(1-(2 \pi f)^{2} \mathrm{LC}\right)\right)$ Impedance is a maximum at resonance

Time Constants
$\begin{array}{ll}\text { RC Circuit } & \text { Time Constant }=\mathrm{RC} \\ \text { RL Circuit } & \text { Time Constant }=\mathrm{L} / \mathrm{R}\end{array}$

RESISTOR, INDUCTOR, CAPACITOR

When electrical energy is supplied to a circuit element, it will respond in one or more of the following three ways. If the energy is consumed, then the circuit element is a pure resistor. If the energy is stored in a magnetic field, the element is a pure inductor. And if the energy is stored in an electric field, the element is a pure capacitor. A practical circuit device exhibits more than one of the above and perhaps all three at the same time, but one may be predominant. A coil may be designed to have a high inductance, but the wire with which it is wound has some resistance; hence the coil has both properties.

RESISTANCE R

The potential difference $v(t)$ across the terminals of a pure resistor is directly proportional to the current $i(t)$ in it. The constant of proportionality R is called the resistance of the resistor and is expressed in volts/ampere or ohms.

$$
v(t)=R i(t) \quad \text { and } \quad i(t)=\frac{v(t)}{R}
$$

No restriction is placed on $v(t)$ and $i(t)$; they may be constant with respect to time, as in D.C. circuits, or they may be

Fig. 1-3 sine or cosine functions, etc.

Lower case letters (v, i, p) indicate general functions of time. Capital letters (V, I, P) denote constant quantities, and peak or maximum values carry a subscript (V_{m}, I_{m}, P_{m}).

INDUCTANCE L

When the current in a circuit is changing, the magnetic flux linking the same circuit changes. This change in flux causes an emf v to be induced in the circuit. The induced emf v is proportional to the time rate of change of current if the permeability is constant. The constant of proportionality is called the selfinductance or inductance of the circuit.

$$
v(t)=L \frac{d i}{d t} \quad \text { and } \quad i(t)=\frac{1}{L} \int v d t
$$

Fig. 1-4

When v is in volts and $d i / d t$ in amperes $/ \mathrm{sec}, L$ is in volt-sec/ampere or henries. The self-inductance of a circuit is 1 henry (1 h) if an emf of 1 volt is induced in it when the current changes at the rate of 1 ampere/sec.

CAPACITANCE C

The potential difference v between the terminals of a capacitor is proportional to the charge q on it. The constant of proportionality C is called the capacitance of the capacitor.

$$
q(t)=C v(t), \quad i=\frac{d q}{d t}=C \frac{d v}{d t}, \quad v(t)=\frac{1}{C} \int i d t
$$

When q is in coulombs and v in volts, C is in coulombs/volt

Fig. 1-5 or farads. A capacitor has capacitance 1 farad (1 f) if it requires 1 coulomb of charge per volt of potential difference between its conductors. Convenient submultiples of the farad are

$$
1 \mu \mathrm{f}=1 \text { microfarad }=10^{-6} \mathrm{f} \text { and } 1 \mu \mu \mathrm{f}=1 \text { micromicrofarad }=10^{-12} \mathrm{f}
$$

Biomedical Electronics Circuits Review

KIRCHHOFF'S LAWS

1. The sum of the currents entering a junction is equal to the sum of the currents leaving the junction. If the currents toward a junction are considered positive and those away from the same junction negative, then this law states that the algebraic sum of all the currents meeting at a common junction is zero.

$\mathbf{\Sigma}$ currents entering $=\mathbf{\Sigma}$ currents leaving

$$
i_{1}+i_{3}=i_{2}+i_{4}+i_{5}
$$

or $\quad i_{1}+i_{3}-i_{2}-i_{4}-i_{5}=0$

Fig. 1-6

$\mathbf{\Sigma}$ potential rises $=\mathbf{\Sigma}$ potential drops
$v_{A}-v_{B}=R i+L(d i / d t)$
or $\quad v_{A}-v_{B}-R i-L(d i / d t)=0$
Fig. 1-7
2. The sum of the rises of potential around any closed circuit equals the sum of the drops of potential in that circuit. In other words, the algebraic sum of the potential differences around a closed circuit is zero. With more than one source when the directions do not agree, the voltage of the source is taken as positive if it is in the direction of the assumed current.

Circuit Response of Single Elements

Element	Voltage across element	Current in element
Resistance R	$v(t)=R i(t)$	$i(t)=\frac{v(t)}{R}$
Inductance L	$v(t)=L \frac{d i}{d t}$	$i(t)=\frac{1}{L} \int v d t$
Capacitance C	$v(t)=\frac{1}{C} \int i d t$	$i(t)=C \frac{d v}{d t}$

Units in the MKS System

Quantity		Unit		Quantity		Unit	
Length	l	meter	m	Charge	Q, q	coulomb	c
Mass	m	kilogram	kg	Potential	V, v	volt	v
Time	t	second	sec	Current	I, i	ampere	amp
Force	F, f	newton	$n t$	Resistance	R	ohm	Ω
Energy	W, w	joule	j	Inductance	L	henry	h
Power	P, p	watt	w	Capacitance	C	farad	f

Equations and Relationships

Inductive Reactance

$$
X_{L}=2 \pi f L
$$

Capacitive Reactance

$$
X_{C}=\frac{1}{2 \pi f C}
$$

RC Circuit

$$
f_{0}=\frac{1}{2 \pi R C}
$$

Cut-off Frequency Resonant Frequency

RL Circuit
$f_{0}=\frac{1}{2 \pi L / R}$
RCL Circuit
$f_{0}=\frac{1}{2 \pi \sqrt{L C}}$
$t=\frac{R \sqrt{C / L}}{2}$

RCL Series Impedance

$$
Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}
$$

R\&CL Parallel Impedance

$$
Z=\sqrt{R^{2}+\left(\frac{X_{L} X_{C}}{X_{L}-X_{C}}\right)^{2}}
$$

RCL Parallel Impedance

$$
Z=\frac{R X_{L} X_{C}}{X_{L} X_{C}-R\left(X_{L}-X_{C}\right)}
$$

Common Configuration

Notes:
When $\omega=0, \mathrm{X}_{\mathrm{C}} \rightarrow \infty$, i.e., C appears as an open circuit, so that $V_{\text {out }}=\frac{R_{2}}{R_{1}+R_{2}}$

When $\omega \gg 0, \mathrm{X}_{\mathrm{C}}=0$, i.e., C appears as a short circuit, so that $V_{\text {out }}=0$

FIGURE 8.2

Ideal Transformer Relations (Equations)

Definitions:
Primary Winding (input - subscript ${ }_{1}$)
Secondary Winding (output - subscript ${ }_{2}$)
Turns Ratio $=\mathrm{n}_{1} / \mathrm{n}_{2}$ (number of turns on primary winding / number of turns on secondary winding)
Voltage Ratio: $\mathrm{V}_{1} / \mathrm{V}_{2}=\mathrm{n} 1 / \mathrm{n}_{2}$ (Directly Proportional)
Current Ratio: $\mathrm{I}_{1} / \mathrm{I}_{2}=\mathrm{n}_{2} / \mathrm{n}_{1} \quad$ (Inversely Proportional)
Power Ratio: 1 to 1 (Power Out $=$ Power In) Ideal Power Out $=e \times$ Power In where e is the Efficiency Factor $(e<1)$

Impedance Ratio: $\mathrm{Z}_{1} / \mathrm{Z}_{2}=\left(\mathrm{n}_{1} / \mathrm{n}_{2}\right)^{2}$
For additional information, refer to
Practical Electronics for Inventors, 3ed pp 374-402

Transformer Problems and Questions

1. Given an ideal transformer with primary turns $=9600$ and secondary turns $=480$, assume 100% efficiency. For input voltage $=120 \mathrm{VAC}$ and output impedance $=16 \mathrm{ohms}$;
a. Calculate output voltage
b. Calculate output current
c. Calculate output power
b. Calculate input current
c. Calculate input power
b. Calculate input impedance
2. Determine the turns ratio for an impedance matching transformer where the first stage input impedance is 50 ohms and the second stage output impedance is 8 ohms.

Understanding the Behavior of Complex Impedances

Understanding the Behavior of Complex Impedances at very low frequency (i.e., $\mathrm{f} \approx 0$) and at very high frequency (i.e., $\mathrm{f} \gg 0$ or $\mathrm{f} \approx \infty$).

For Inductive Reactance, $\mathrm{X}_{\mathrm{L}}=\omega \mathrm{L}$
If $\omega=0$, then $X_{L}=\omega L=0$
If $\omega \gg 0$, then $X_{L}=\omega L \gg 0 \approx \infty$
For Capacitive Reactance, $\mathrm{X}_{\mathrm{C}}=1 / \omega \mathrm{C}$
If $\omega=0$, then $X_{C}=1 / \omega \mathrm{C} \gg 0 \approx \infty$
If $\omega \gg 0$, then $\mathrm{X}_{\mathrm{C}}=1 / \omega \mathrm{C} \approx 0$
$\mathrm{R}=\mathrm{R}$ regardless of ω.
From Ohm's Law for Alternating Current, Impedance $Z=v(t) / i(t)$
$\mathrm{Z}=\mathrm{R}+\mathrm{j}(\mathrm{X})$ where X is the reactant component due to circuit capacitors and inductors at a given frequency.
IF $Z=0$, then Short, i.e., like a wire conductor, very high current ($I=V / Z$).
If $Z \gg 0(Z \approx \infty)$, then Open, i.e., like a open switch, no current.
A Short in parallel with any other number of elements appears as a Short overall; i.e., just a wire conductor.

An Open in parallel with another element can be considered to be no existent, i.e., no effect.

A Short in series with another element can be considered to be just a wire conductor.

An Open in series with another number of elements appears as an Open Switch.

If $\omega=0$, then $X_{L}=\omega L=0$ and $X_{C}=1 / \omega C \gg 0$.
If $\omega \gg 0$, then $X_{L}=\omega L \gg 0$ and $X_{C}=1 / \omega C=0$.
$\mathrm{R}=\mathrm{R}$ regardless of ω.
IF $Z=0$, then Short, i.e., like a wire conductor, very high current ($I=V / R$).
If $Z \gg 0(Z \approx \infty)$, then Open, i.e., like a open switch, no current.
For series: $\mathrm{Z}+0=\mathrm{Z}$ and $\mathrm{Z}+\infty=\infty$ (Open)
For parallel, $Z \| 0=\frac{Z(0)}{Z+0}=0$ (Short) and $\quad Z \| \infty=\frac{Z(\infty)}{Z+\infty}=\frac{Z(\infty)}{\infty}=Z$

From Complex Impedance Quiz \& BME/ISE 3511Fall 2015 Test Four

A.

$$
R+\frac{X_{C} X_{L}}{X_{C}+X_{L}}
$$

if $\boldsymbol{\omega}=\mathbf{0}$, then $R+\frac{X_{C} X_{L}}{X_{C}+X_{L}} \quad \approx \mathrm{R}+0=\mathrm{R}\left(\right.$ Note: $\left.\mathrm{X}_{\mathrm{L}}=0\right) \quad$ Overall Effect $=$ Resistive
if $\boldsymbol{\omega} \gg \mathbf{0}$, then $R+\frac{X_{C} X_{L}}{X_{C}+X_{L}} \approx \mathrm{R}+0=\mathrm{R} \quad\left(\right.$ Note: $\left.\mathrm{X}_{\mathrm{C}}=0\right) \quad$ Overall Effect $=$ Resistive

if $\boldsymbol{\omega}=\mathbf{0}$, then $X_{L}+\frac{R X_{C}}{R+X_{C}} \approx 0+\frac{R X_{C}}{R+X_{C}} \approx 0+\frac{R X_{C}}{X_{C}}=0+\mathrm{R}=\mathrm{R}\left(\right.$ Note: $\mathrm{X}_{\mathrm{L}}=0$ and $\left.\mathrm{X}_{\mathrm{C}} \gg 0\right)$

Overall Effect $=$ Resistive

if $\omega \gg \mathbf{0}$, then $X_{L}+\frac{R X_{C}}{R+X_{C}}=\infty+0=\infty$ Open (Note: $\mathrm{X}_{\mathrm{L}}=\infty$ and $\mathrm{X}_{\mathrm{C}}=0$)
Overall Effect $=$ Open
C.

$$
X_{C}+\frac{R X_{L}}{R+X_{L}}
$$

if $\boldsymbol{\omega}=\mathbf{0}$, then $X_{C}+\frac{R X_{L}}{R+X_{L}} \quad \approx \infty+\frac{R(0)}{R+0} \approx \infty+0=\infty$ Open (Note: $\mathrm{X}_{\mathrm{C}} \gg 0$ and $\mathrm{X}_{\mathrm{L}}=0$)
Overall Effect $=\mathbf{O p e n}$
if $\boldsymbol{\omega} \gg \mathbf{0}$, then $X_{C}+\frac{R X_{L}}{R+X_{L}} \approx 0+\frac{R X_{L}}{R+X_{L}} \approx 0+\frac{R X_{L}}{X_{L}}=0+\mathrm{R}=\mathrm{R}\left(\right.$ Note: $\mathrm{X}_{\mathrm{C}}=0$ and $\mathrm{X}_{\mathrm{L}} \gg 0$)
Overall Effect $=$ Resistive

