

|  | Electrical Theory |  |  |  |
| :--- | :--- | :--- | :--- | :---: |
| Quantity | Symbol | Unit | Equation |  |
| Charge | Q | coulomb | $\mathrm{Q}=\int \mathrm{idt}$ |  |
| Current | Q | ampere | $\mathrm{I}=\mathrm{dQ} / \mathrm{dt}$ |  |
| Voltage | V | volt | $\mathrm{V}=\mathrm{dW} / \mathrm{dQ}$ |  |
| Energy | W | joule | $\mathrm{W}=\mathrm{V} \mathrm{VQ}=\int \mathrm{Pdt}$ |  |
| Power | P | watt | $\mathrm{P}=\mathrm{dW} / \mathrm{dt}=\mathrm{IV}$ |  |
|  |  |  |  |  |
|  |  |  |  |  |

## Power and Voltage Ratios Expressed in Decibels (dB's)

1 Bel $=\log \left(\right.$ Power $_{2} /$ Power $\left._{1}\right)$
1 decibel $=1 \mathrm{~dB}=0.1 \mathrm{Bel}$, hence $10 \mathrm{~dB}=1 \mathrm{Bel}$

To express a Power Ratio in $\mathrm{dB}^{\prime}$ 's, use $\mathrm{dB}=10 \log \left(\right.$ Power $_{2} /$ Power $\left._{1}\right)$
Let Power $_{2}=2$ Power $_{1}$
Power Ratio in dB's = $10 \log \left(2\right.$ Power $_{1} /$ Power $\left._{1}\right)=10 \log (2)=3.01$

Let Power $_{2}=0.5$ Power 1
Power Ratio in dB's $=10 \log \left(0.5\right.$ Power $_{1} /$ Power $\left._{1}\right)=10 \log (0.5)=-3.01$
-3 dB is often expressed as " 3 dB Down" which is the half power point $\left(\right.$ Power $_{2}=1 / 2$ Power $\left._{1}\right)$
Let Power $_{2}=$ Power $_{1}$
Power Ratio in dB's $=10 \log \left(\right.$ Power $_{1} /$ Power $\left._{1}\right)=10 \log (1)=0$
$\mathrm{dB}=0$ does not imply zero power but rather a power ratio of one-to-one
$\mathrm{dB}=0$ can be used as a zero reference; that is to say, set your reference level to a particular value and then use the dB scale to refer all other values to that reference level.

Examples: Reference Level $=400$ watts.
200 watts $=-3 \mathrm{~dB}$
800 watts $=+3 \mathrm{~dB}$
400 watts $=0 \mathrm{~dB}$
4000 watts $=+10 \mathrm{~dB}$
40 watts $=-10 \mathrm{~dB}$
650 watts $=+2.1 \mathrm{~dB}$
65 watts $=-7.9 \mathrm{~dB}$
100 watts $=-6 \mathrm{~dB}$
$2,500,000$ watts $=+64 \mathrm{~dB}$
Note: A reference of 1 milliwatts is used for dBm 's
1 milliwatts $=10 \log (1 / 1)=0 \mathrm{dBm}$
5 milliwatts $=10 \log (5 / 1)=+7 \mathrm{dBm}$
500 milliwatts $=+27 \mathrm{dBm}$
0.001 milliwatts $=-30 \mathrm{dBm}$

For Voltage, $\quad$ Power $=I E=(E / R) E=E^{2} / R$
To express a Voltage Ratio in dB's, use $\mathrm{dB}=10 \log \left(\right.$ Power $_{2} /$ Power $\left.\left._{1}\right)=10 \log \left[\left(\mathrm{E}_{2}^{2} / \mathrm{R}\right) / \mathrm{E}_{1}^{2} / \mathrm{R}\right)\right]$
$\left.10 \log \left[\left(\mathrm{E}_{2}^{2} / \mathrm{R}\right) / \mathrm{E}_{1}^{2} / \mathrm{R}\right)\right]=10 \log \left(\mathrm{E}_{2}^{2} / \mathrm{E}_{1}^{2}\right)=20 \log \left(\mathrm{E}_{2} / \mathrm{E}_{1}\right)$
Let Power Ratio $\mathrm{dB}=-3$, then

$$
\begin{aligned}
& 20 \log \left(E_{2} / E_{1}\right)=-3 \\
& \log \left(E_{2} / E_{1}\right)=-0.15 \\
& E_{2} / E_{1}=0.707=0.5 \operatorname{SQRT}(2)
\end{aligned}
$$



Change to Units (Amps, Volts, Watts)

| From | To Units |  |
| :---: | :--- | :--- |
| Milli | $\div 1000$ | $10^{-3}$ |
| Micro | $\div 1,000,000$ | $10^{-6}$ |
| Kilo | $\times 1000$ | $10^{3}$ |
| Mega | $\times 1,000,000$ | $10^{6}$ |

## Change from Units to Multiples

| To |  |  |
| :---: | :--- | :--- |
| Milli | $\times 1000$ | $10^{3}$ |
| Micro | $\times 1,000,000$ | $10^{6}$ |
| Kilo | $\div 1000$ | $10^{-3}$ |
| Mega | $\div 1,000,000$ | $10^{-6}$ |

