

Electrical Theory				
<u>Quantity</u>	<u>Symbol</u>	<u>Unit</u>	Equation	
Charge	Q	coulomb	Q =∫idt Q = CV	
Current	Ι	ampere	I = dQ/dt	
Voltage	V	volt	V = dW/dQ	
Energy	W	joule	W = ∫VdQ = ∫ Pdt	
Power	Р	watt	P = dW/dt = IV	

 $1 \text{ Bel} = \log(\text{Power}) / \text{Power}$

1 decibel = 1 dB = 0.1 Bel, hence 10 dB = 1 Bel

To express a Power Ratio in dB's, use $dB = 10 \log(Power_{1} / Power_{1})$

Let $Power_2 = 2 Power_1$ Power Ratio in dB's = 10 log(2 Power_1 / Power_1) = 10 log(2) = 3.01

Let $Power_2 = 0.5 Power1$ Power Ratio in dB's = 10 log(0.5 Power_1 / Power_1) = 10 log(0.5) = -3.01

-3 dB is often expressed as "3 dB Down" which is the half power point (Power₂ = 1/2 Power₁)

Let $Power_2 = Power_1$ Power Ratio in dB's = 10 log(Power_1 / Power_1) = 10 log(1) = 0

dB = 0 does not imply zero power but rather a power ratio of one-to-one dB = 0 can be used as a zero reference; that is to say, set your reference level to a particular value and then use the dB scale to refer all other values to that reference level.

```
Examples: Reference Level = 400 watts.

200 watts = -3 dB

800 watts = +3 dB

400 watts = 0 dB

4000 watts = +10 dB

40 watts = -10 dB

650 watts = +2.1 dB

65 watts = -7.9 dB

100 watts = -6 dB

2,500,000 watts = +64 dB
```

Note: A reference of 1 milliwatts is used for dBm's 1 milliwatts = $10 \log(1 / 1) = 0 dBm$ 5 milliwatts = $10 \log(5 / 1) = +7 dBm$ 500 milliwatts = +27 dBm0.001 milliwatts = -30 dBm

For Voltage, Power = $IE = (E/R)E = E^2/R$

To express a Voltage Ratio in dB's, use dB = $10 \log(\text{Power}_2 / \text{Power}_1) = 10 \log[(\text{E}_2^2/\text{R}) / \text{E}_1^2/\text{R})] = 10 \log[(\text{E}_2^2/\text{R}) / \text{E}_1^2/\text{R})] = 10 \log(\text{E}_2^2 / \text{E}_1^2) = 20 \log(\text{E}_2^2 / \text{E}_1)$

Let Power Ratio $dB = -3$, then	$1 20 \log(E_2 / E_1) = -3$
	$\log (E_2 / E_1) = -0.15$
	$E_{2} / E_{1} = 0.707 = 0.5 \text{ SQRT}(2)$

DMM Connections

Change to Units (Amps, Volts, Watts)				
To Units				
÷ 1000	10-3			
÷ 1,000,000	10-6			
x 1000	10 ³			
x 1,000,000	106			
	Jnits (Amps, V To Units ÷ 1000 ÷ 1,000,000 x 1000 x 1,000,000			

Change from Units to Multiples				
То				
Milli	x 1000	103		
Micro	x 1,000,000	106		
Kilo	÷ 1000	10-3		
Mega	÷ 1,000,000	10-6		