BJT Biasing Homework Problems

1. Emitter Biased, Common Emitter Determine the quiescent operating point ($I_{cq} \& V_{ceq}$) and $V_{ce Cut-off} \& I_{c Saturation}$

d.
$$I_{_{C Saturation}}$$

2. Emitter Biased, Common Emitter with Emitter Resistor Determine the quiescent operating point ($I_{CQ} \& V_{CEQ}$) and $V_{CE Cut-off} \& I_{C Saturation}$

- CE Cut-off
- d. $I_{C Saturation}$

BJT Biasing Homework Problems

- 3. Voltage-Divider Biased, Common Emitter Configuration Calculate the quiescent points (I_{cq} and V_{cEQ}) And determine $V_{ce Cut-off}$ and $I_{C Saturation}$
 - $\beta = 100$
 - $V_{cc} = 16 V$
 - $R_{1} = 47K \Omega$ $R_{2} = 12K \Omega$
 - $R_{2} = 12R \Omega^{2}$ $R_{2} = 2200 \Omega$
 - $R_{\rm e} = 1800 \,\Omega$

Find:

- a. Quiescent Current I_{cq}
- b. Quiescent Voltage V_{CEO}
- c. $V_{\text{CE Cut-off}}$
- d. I_{C Saturation}
- $\begin{array}{ll} \mbox{4. Voltage-Divider Biased, Cascaded Amplifier} \\ \mbox{Calculate the quiescent points (I}_{_{CQ}} \mbox{ and } V_{_{CEQ}}) \mbox{ for } Q_1 \mbox{ and } Q_1. \end{array}$
 - $\begin{array}{l} \beta_1 \mbox{ and } \beta_2 = 100 \\ V_{CC} = \ 21 \ V \\ R_1 = \ 47K \ \Omega \\ R_2 = \ 10K \ \Omega \\ R_3 = \ 15K \ \Omega \\ R_C = \ 1200 \ \Omega \\ R_E = \ 1800 \ \Omega \end{array}$

Find:

- $a. \ Q_1 \ I_{CQ}$
- b. Q₁ V_{CEQ}
- $c. \ Q_2 \ I_{CQ}$
- $d. \ Q_2 \ V_{CEQ}$

BJT Biasing Homework Problems

Set the quiescent point at approximately $I_{CQ} = 8 \text{ mA}$ and $V_{CEQ} = 9.5 \text{ V}$ with $V_{CC} = 16 \text{ Volts}$.

Hint: Use the chart to determine a value for $\beta = I_c / I_{R}$.

Calculate a value for $R_{_B}$, consult the web or a catalog or your textbook to choose the nearest real world valued resistors and then recalculate values for $I_{_B}$ and $I_{_C}$.

- a. Calculated value for $R_{_{\rm B}}$
- b. Real world value for $R_{_{\rm B}}$
- c. Re-calculated value for I_{BO}
- d. Re-calculated value for I_{co}

Calculate a value for R_c , consult the web or a catalog or your textbook to choose the nearest real world valued resistors and then calculate values for $V_{_{CEQ}}$, $I_{_{C sat}}$, and $V_{_{CE cut-off}}$.

- e. Calculated value for R_c
- f. Real world value for R_{c}
- g. Calculated value for $V_{_{CEQ}}$
- h. Calculated value for I_{C sat}
- i. Re-calculated value for $V_{_{CE cut-off}}$

BJT Biasing Homework Solutions

- 1. Emitter Biased, Common Emitter
 - a. $I_{cq} = 4.65 \text{ mA}$
 - b. $V_{CEQ} = 4.9 V$
 - c. $V_{\text{CE Cut-off}} = 10 \text{ V}$
 - d. $I_{CSaturation} = 9.1 \text{ mA}$
- 2. Emitter Biased, Common Emitter with Emitter Resistor
 - a. $I_{cq} = 6.4 \text{ mA}$
 - b. $V_{CEQ} = 5.4 V$
 - c. $V_{\text{CE Cut-off}} = 16 \text{ V}$
 - d. $I_{CSaturation} = 9.7 \text{ mA}$
- 3. Voltage-Divider Biased, Common Emitter Configuration
 - a. $I_{CQ} = 1.4 \text{ mA}$ b. $V_{CEQ} = 10.4 \text{ V}$ c. $V_{CE Cut-off} = 16 \text{ V}$ d. $I_{CS aturation} = 4 \text{ mA}$
- 4. Voltage-Divider Biased, Cascaded Amplifier
 - a. $Q_1 I_{CQ} = 2 \text{ mA}$ b. $Q_1 V_{CEQ} = 2.9 \text{ V}$ c. $Q_2 I_{CQ} = 2 \text{ mA}$ d. $Q_2 V_{CEQ} = 12.0 \text{ V}$

5. Note: $\beta = 200$, for $I_B = 40 \ \mu A$ and $I_{CQ} = 8 \ mA$, set Q at $I_{CQ} = 8 \ mA$ and $V_{CEQ} = 9.5 \ V$ with $V_{CC} = 16 \ Volts$.

- a. First-cut value for $R_{\rm B} = 382,500 \,\Omega$
- b. Pick $R_{\rm B} = 390 \text{ K}\Omega$
- c. Re-calculated value for $I_{BO} = 39.2 \ \mu A$
- d. Re-calculated value for $I_{CO} = 7.84 \text{ mA}$
- e. First-cut value for $R_C = 829 \Omega$
- f. Pick $R_{\rm B} = 820 \ \Omega$
- g. Calculated value for $V_{CEO} = 9.6 V$
- h. Calculated value for $I_{C \text{ sat}} = 20 \text{ mA}$
- i. Calculated value for $V_{CE \text{ cut-off}} = 16 \text{ V}$

Calculating Operating Points (Quiescent ICQ & VCEQ) for Voltage-Divider Biased BJT Cascaded Amplifiers

Caveats:

The following is NOT a computational algorithm; nor is it a step-by-step cookbook recipe to be followed blindly. But rather, it is a list of insights illustrating a generalized method for solving similar problems.

Refer to Take-Home Quiz cascading amplifier schematic.

Insights:

To find I_{CQ} , V_{CEQ1} , and V_{CEQ2}

- 1. $I_{C2} = I_{E2} = I_{C1} = I_{E2} = I_C$
- 2. V_{B1} is the voltage from the base of Q_1 to ground:
 - Voltage Divider $V_{B1} = V_{CC} \frac{R_3}{R_1 + R_2 + R_3}$

Calculate V_{B1}

 V_{B1} also equals $V_{B1} = V_{BE1} + I_C R_E$

So

$$I_{c} = \frac{V_{B1} - V_{BE1}}{R_{F}}$$
 where $V_{BE1} = 0.7 V$

Calculate I_{CQ}

3. V_{B2} is the voltage from the base of Q_2 to ground:

Voltage Divider
$$V_{B_2} = V_{CC} \frac{R_2 + R_3}{R_1 + R_2 + R_3}$$

Calculate V_{B2}

$$V_{CE1} = V_{B2} - V_{BE2} - I_C R_E$$
 where $V_{BE2} = 0.7 V$

Calculate V_{CEQ1}

So

4. Finally, $V_{CC} = I_C R_C + V_{CE1} + I_C R_E$

So $V_{CE2} = V_{CC} - V_{CE1} - I_C (R_C + R_E)$

Calculate V_{CEQ2}