BJT Biasing Homework Problems

1. Emitter Biased, Common Emitter

Determine the quiescent operating point $\left(\mathrm{I}_{\mathrm{CQ}} \& \mathrm{~V}_{\mathrm{CEQ}}\right)$ and $\mathrm{V}_{\mathrm{CE} \text { Cutorf }} \& \mathrm{I}_{\mathrm{CS} \text { Sauration }}$
$\beta=150$
$\mathrm{V}_{\mathrm{cc}}=10 \mathrm{~V}$
$\mathrm{R}_{\mathrm{B}}=300 \mathrm{~K} \Omega$
$\mathrm{R}_{\mathrm{c}}=1100 \Omega$
Find:
a. Quiescent Current $I_{c \mathrm{c}}$
b. Quiescent Voltage $V_{\text {сер }}$
c. $\mathrm{V}_{\text {CE Cuturf }}$

d. $I_{\text {CSataration }}$
2. Emitter Biased, Common Emitter with Emitter Resistor Determine the quiescent operating point $\left(\mathrm{I}_{\mathrm{CQ}} \& \mathrm{~V}_{\mathrm{CEQ}}\right)$ and $\mathrm{V}_{\mathrm{CE} \text { cutorf }} \& \mathrm{I}_{\mathrm{C} \text { Suaration }}$
$\beta=180$
$\mathrm{V}_{\mathrm{cc}}=16 \mathrm{~V}$
$\mathrm{R}_{\mathrm{B}}=330 \mathrm{~K} \Omega$
$\mathrm{R}_{\mathrm{c}}=1100 \Omega$
$\mathrm{R}_{\mathrm{E}}=550 \Omega$
Find:
a. Quiescent Current $I_{c Q}$
b. Quiescent Voltage $\mathrm{V}_{\text {c®Q }}$

c. $\mathrm{V}_{\text {cE curorf }}$
d. $I_{\text {CSaturation }}$

BJT Biasing Homework Problems

3. Voltage-Divider Biased, Common Emitter Configuration

Calculate the quiescent points (I_{CQ} and $\mathrm{V}_{\text {сер }}$)
And determine $\mathrm{V}_{\text {CE Cutorf }}$ and $\mathrm{I}_{\text {CSaturation }}$

$$
\begin{aligned}
\beta & =100 \\
\mathrm{~V}_{\mathrm{cc}} & =16 \mathrm{~V} \\
\mathrm{R}_{1} & =47 \mathrm{~K} \Omega \\
\mathrm{R}_{2} & =12 \mathrm{~K} \Omega \\
\mathrm{R}_{\mathrm{c}} & =2200 \Omega \\
\mathrm{R}_{\mathrm{E}} & =1800 \Omega
\end{aligned}
$$

Find:
a. Quiescent Current $I_{c Q}$

b. Quiescent Voltage $\mathrm{V}_{\text {c巨e }}$
c. $\mathrm{V}_{\text {cE } \mathrm{Cutoff}}$
d. $I_{\text {CSataration }}$
4. Voltage-Divider Biased, Cascaded Amplifier

Calculate the quiescent points (I_{CQ} and $\mathrm{V}_{\text {cЕQ }}$) for Q_{1} and Q_{1}.
β_{1} and $\beta_{2}=100$
$\mathrm{V}_{\mathrm{CC}}=21 \mathrm{~V}$
$\mathrm{R}_{1}=47 \mathrm{~K} \Omega$
$\mathrm{R}_{2}=10 \mathrm{~K} \Omega$
$\mathrm{R}_{3}=15 \mathrm{~K} \Omega$
$\mathrm{R}_{\mathrm{C}}=1200 \Omega$
$\mathrm{R}_{\mathrm{E}}=1800 \Omega$
Find:
a. $\mathrm{Q}_{1} \mathrm{I}_{\mathrm{CQ}}$
b. $\mathrm{Q}_{1} \mathrm{~V}_{\mathrm{CEQ}}$

c. $\mathrm{Q}_{2} \mathrm{I}_{\mathrm{CQ}}$
d. $\mathrm{Q}_{2} \mathrm{~V}_{\mathrm{CEQ}}$

BJT Biasing Homework Problems

5. Use the Collector Characteristic Curves for $I_{B}, I_{C}, \& V_{C E}$ to determine values for R_{B} and R_{C} for the BJT circuit below.

Set the quiescent point at approximately $\mathrm{I}_{\mathrm{CQ}}=8 \mathrm{~mA}$ and $\mathrm{V}_{\text {СЕQ }}=9.5 \mathrm{~V}$ with $\mathrm{V}_{\mathrm{CC}}=16$ Volts.
Hint: Use the chart to determine a value for $\beta=\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}$.
Calculate a value for R_{B}, consult the web or a catalog or your textbook to choose the nearest real world valued resistors and then recalculate values for I_{B} and I_{C}.
a. Calculated value for R_{B}
b. Real world value for R_{B}
c. Re-calculated value for $I_{B Q}$
d. Re-calculated value for I_{CQ}

Calculate a value for R_{c}, consult the web or a catalog or your textbook to choose the nearest real world valued resistors and then calculate values for $\mathrm{V}_{\text {CEQ }}, \mathrm{I}_{\mathrm{Csat}}$, and $\mathrm{V}_{\text {CE cut-off }}$.
e. Calculated value for R_{C}
f. Real world value for R_{C}
g. Calculated value for $\mathrm{V}_{\mathrm{CEQ}}$
h. Calculated value for $\mathrm{I}_{\mathrm{C} \text { sat }}$
i. Re-calculated value for $\mathrm{V}_{\text {CE cut-off }}$

BJT Biasing Homework Solutions

1. Emitter Biased, Common Emitter
a. $I_{c Q}=4.65 \mathrm{~mA}$
b. $\mathrm{V}_{\text {СЕQ }}=4.9 \mathrm{~V}$
c. $\mathrm{V}_{\text {cE cuturf }}=10 \mathrm{~V}$
d. $\mathrm{I}_{\mathrm{CStataration}}=9.1 \mathrm{~mA}$
2. Emitter Biased, Common Emitter with Emitter Resistor
a. $\mathrm{I}_{\mathrm{CQ}}=6.4 \mathrm{~mA}$
b. $\mathrm{V}_{\text {сер }}=5.4 \mathrm{~V}$
c. $\mathrm{V}_{\text {CE Cuturfif }}=16 \mathrm{~V}$
d. $\mathrm{I}_{\mathrm{CSumaration}}=9.7 \mathrm{~mA}$
3. Voltage-Divider Biased, Common Emitter Configuration
a. $I_{c \mathrm{e}}=1.4 \mathrm{~mA}$
b. $\mathrm{V}_{\mathrm{CEQ}}=10.4 \mathrm{~V}$
c. $\mathrm{V}_{\text {CE Cuturfif }}=16 \mathrm{~V}$
d. $I_{C \text { Saturation }}=4 \mathrm{~mA}$
4. Voltage-Divider Biased, Cascaded Amplifier
a. $\mathrm{Q}_{1} \mathrm{I}_{\mathrm{CQ}}=2 \mathrm{~mA}$
b. $\mathrm{Q}_{1} \mathrm{~V}_{\mathrm{CEQ}}=2.9 \mathrm{~V}$
c. $\mathrm{Q}_{2} \mathrm{I}_{\mathrm{CQ}}=2 \mathrm{~mA}$
d. $\mathrm{Q}_{2} \mathrm{~V}_{\mathrm{CEQ}}=12.0 \mathrm{~V}$
5. Note: $\beta=200$, for $\mathrm{I}_{\mathrm{B}}=40 \mu \mathrm{~A}$ and $\mathrm{I}_{\mathrm{CQ}}=8 \mathrm{~mA}$, set Q at $\mathrm{I}_{\mathrm{CQ}}=8 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{CB}}=9.5 \mathrm{~V}$ with $\mathrm{V}_{\mathrm{cc}}=16$ Volts.
a. First-cut value for $R_{B}=382,500 \Omega$
b. Pick $R_{B}=390 \mathrm{~K} \Omega$
c. Re-calculated value for $\mathrm{I}_{\mathrm{BQ}}=39.2 \mu \mathrm{~A}$
d. Re-calculated value for $\mathrm{I}_{\mathrm{CQ}}=7.84 \mathrm{~mA}$
e. First-cut value for $\mathrm{R}_{\mathrm{C}}=829 \Omega$
f. Pick $R_{B}=820 \Omega$
g. Calculated value for $\mathrm{V}_{\mathrm{CEQ}}=9.6 \mathrm{~V}$
h. Calculated value for $\mathrm{I}_{\mathrm{C} \text { sat }}=20 \mathrm{~mA}$
i. Calculated value for $\mathrm{V}_{\mathrm{CE} \text { cut-off }}=16 \mathrm{~V}$

Caveats:
The following is NOT a computational algorithm; nor is it a step-by-step cookbook recipe to be followed blindly. But rather, it is a list of insights illustrating a generalized method for solving similar problems.

Refer to Take-Home Quiz cascading amplifier schematic.
Insights:
To find $\mathrm{I}_{\mathrm{CQ}}, \mathrm{V}_{\mathrm{CEQ} 1}$, and $\mathrm{V}_{\mathrm{CEQ} 2}$

1. $\mathrm{I}_{\mathrm{C} 2}=\mathrm{I}_{\mathrm{E} 2}=\mathrm{I}_{\mathrm{C} 1}=\mathrm{I}_{\mathrm{E} 2}=\mathrm{I}_{\mathrm{C}}$
2. $\mathrm{V}_{\mathrm{B} 1}$ is the voltage from the base of Q_{1} to ground:

Voltage Divider $\quad V_{B 1}=V_{C C} \frac{R_{3}}{R_{1}+R_{2}+R_{3}}$
Calculate $\mathbf{V}_{\mathrm{B} 1}$
$\mathrm{V}_{\mathrm{B} 1}$ also equals $\quad V_{B 1}=V_{B E 1}+I_{C} R_{E}$
So $\quad I_{C}=\frac{V_{B 1}-V_{B E 1}}{R_{E}}$ where $V_{B E 1}=0.7 \mathrm{~V}$

Calculate I_{CQ}

3. $V_{B 2}$ is the voltage from the base of Q_{2} to ground:

Voltage Divider $\quad V_{B 2}=V_{C C} \frac{R_{2}+R_{3}}{R_{1}+R_{2}+R_{3}}$

Calculate $\mathbf{V}_{\text {B2 }}$

$\mathrm{V}_{\mathrm{B} 2}$ also equals $\quad V_{B 2}=V_{B E 2}+V_{C E 1}+I_{C} R_{E}$
So $\quad V_{C E 1}=V_{B 2}-V_{B E 2}-I_{C} R_{E}$ where $V_{B E 2}=0.7 \mathrm{~V}$

Calculate $\mathbf{V}_{\text {CEQ1 }}$

4. Finally,

$$
V_{C C}=I_{C} R_{C}+V_{C E 2}+V_{C E 1}+I_{C} R_{E}
$$

So

$$
V_{C E 2}=V_{C C}-V_{C E 1}-I_{C}\left(R_{C}+R_{E}\right)
$$

Calculate $\mathbf{V}_{\text {CeQ2 }}$

