Test Five Topics:
RMS Resistive Power Loss ($\mathrm{I}^{2} \mathrm{R}$)
AC Reactance, Impedance, Power Factor
RCL Circuit Analysis
Calculate Series RCL Impedance
Calculate Series RCL Resonance Frequency
Determine whether Series RCL circuit at resonance has maximum or minimum current
Calculate Parallel RCL Impedance
Calculate Parallel RCL Resonance Frequency
Determine whether Parallel RCL circuit at resonance has maximum or minimum current
RCL Passive Filters
Using a schematic of a RC or RL circuit, determine if the circuit depicts a low pass filter or a high pass filter
Calculate the time constant
Calculate the filter's cut-off frequency
Sketch the $\mathrm{V}_{\text {out }} / \mathrm{V}_{\text {in }}$ Curve
Label both axes, the horizontal asymptote, the cut-off frequency, and the $1 / 2$ power point
Review materials include:
Reading Assignments \& Homework Problems
Course Notes
Review Problems including Reactance \& Impedance Quizzes
Additional Review Problems (AC Circuit Analyses)
Additional Review Problems (Reactance, Filters)
Reactance \& Filter Quizzes
See Test Five Review Problems (attached)
For the test, you may use:
a calculator,
two page of YOUR OWN self-generated review notes
Note: Phones may NOT be used during the exam; NOT as calculators, NOT as Internet connections, NOT for resource retrieval (i.e., electronic copies of notes, files, tables, etc.), NOT for communications. If the exam proctor suspects the use of a phone during the exam, your test will be confiscated and zero points will be assigned.

Calculate Capacitive and Inductive Reactance and Complex Impedance
Calculate Series \& Parallel Equivalent Impedance for Resistors, Capacitors, Inductors, Impedances Determine Passive RC and RL Passive Filter Characteristics

1. Calculate Series \& Parallel Impedance Frequency $=420 \mathrm{~Hz}$.

RCL Series Configuration
RCL Parallel Configuration
$\mathrm{R}=20 \Omega$
$\mathrm{R}=20 \Omega$
$\mathrm{C}=25 \mu \mathrm{~F}$
$\mathrm{L}=50 \mathrm{mH}$
$\mathrm{C}=25 \mu \mathrm{~F}$
$\mathrm{L}=50 \mathrm{mH}$

Answers:
$\mathrm{R}=20$ Ohms $\quad \mathrm{XC}=15.2$ Ohms $\quad \mathrm{XL}=$ 131.9 Ohms
RCL Series Configuration $\quad Z=20+j 116.8 \quad Z=118.5 @ 80.3$
RCL Parallel Configuration $\quad Z=8.46-j 9.88 \quad Z=13.1 @-49.4$
2. For Figure A, calculate the circuit impedance if the excitation frequency is 1800 Hz . (Answer: $\mathrm{Z}=300+\mathrm{j} 6428$)
3. For Figure B, calculate the circuit impedance if the excitation frequency is 900 KHz . (Answer: $\mathrm{Z}=3000+\mathrm{j} 141$)

Figure A
Figure B
4. Sketch RC Filter \& $V_{\text {out }} / V_{\text {in }}$ Curve
a. Calculate the cut-off frequency (half power point) if $\mathrm{R}=1500$ ohms and $\mathrm{C}=0.100 \mathrm{uF}$. (Answer $\mathrm{f}_{0}=1060 \mathrm{~Hz}$)
b. Calculate the time constant. (Answer $t=0.9 \mathrm{msec}$)
c. Sketch the circuit for a RC low pass filter
d. Sketch the circuit for a RC high pass filter
5. Sketch RL Filter \& $\mathrm{V}_{\text {out }} / \mathrm{V}_{\mathrm{in}}$ Curve
a. Calculate the cut-off frequency (half power point) if $\mathrm{R}=1500$ ohms and $\mathrm{L}=12 \mathrm{H}$. (Answer $\mathrm{f}_{0}=20 \mathrm{~Hz}$)
b. Calculate the time constant. (Answer $\mathrm{t}=8 \mathrm{msec}$)
c. Sketch the circuit for a RL low pass filter
d. Sketch the circuit for a RL high pass filter
6. Reactance Quiz
7. Complex Impedance Quiz
8. Passive Filter Recognition Quiz
9. Additional AC Circuit Analysis Problems (see page 2)

9. Additional AC Circuit Analysis Problems

Basic Electronics for Scientists - James J. Brophy

5-3 Determine the rms current in the 1000- Ω resistor of the circuit in Fig. 5-22. Is the current inductive or capacitive? Answer: 6.5 mA ; capacitive

Figure 5-22

5-4 Calculate the equivalent impedance of the circuit in Fig. 5-23 at a frequency of 100 Hz . Repeat for 1000 Hz .

Answer: $0.198+j 2.63 \times 10^{6} \Omega ; 384+j 2.47 \times 10^{9} \Omega$

Figure 5-23

For each of the above configurations for both $\omega=0$ and $\omega=\propto$, determine whether or not the resulting circuit appears as either a resistive circuit, a short circuit, or an open circuit. Check the appropriate blank(s).

For $\omega=0$

Figure
A.
B.
C.
D.

For $\omega=\propto$
Figure
E.
F.
G.
H.

Resistive Circuit
Short Circuit
\qquad
\qquad
\qquad
\qquad
\qquad

Complex Impedance Quiz

Devise formulas for each of the complex impedance configurations using R, X_{C}, and X_{L}.
Hint: Impedances in series add, i.e., $\mathrm{Z}=\mathrm{Z}_{1}+\mathrm{Z}_{2}$
Two impedances in parallel equal the "product over the sum", i.e. $Z=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}$
A.

E.

B.

C.

F.

D.

G.

H.

Passive Filter Quick Recognition Quiz

For each of the four schematics, indicate whether or not the configuration represents a Low Pass Filter or a High Pass Filter.

Hint: \quad Consider the reactance when $\omega=0$.

$$
\begin{array}{lll}
\mathrm{X}_{\mathrm{L}}=0 & \mathrm{~V}_{\mathrm{L}}=0 & \mathrm{~V}_{\mathrm{R}}=\mathrm{V}_{\text {in }} \\
\mathrm{X}_{\mathrm{C}} \gg 0 & \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\text {in }} & \mathrm{V}_{\mathrm{R}}=0
\end{array}
$$

If $V_{\text {out }}=V_{\text {in }}$, then since $\omega=0$, passes low frequencies, hence Low Pass Filter.
If $\mathrm{V}_{\text {out }}=0$, then since $\omega=0$, blocks low frequencies, hence passes only high frequencies, i.e., High Pass Filter.

Similarly: \quad Consider the reactance when $\omega \gg 0$.

$$
\begin{array}{lll}
\mathrm{X}_{\mathrm{L}} \gg 0 & \mathrm{~V}_{\mathrm{L}}=\mathrm{V}_{\text {in }} & \mathrm{V}_{\mathrm{R}}=0 \\
\mathrm{X}_{\mathrm{C}}=0 & \mathrm{~V}_{\mathrm{C}}=0 & \mathrm{~V}_{\mathrm{R}}=\mathrm{V}_{\text {in }}
\end{array}
$$

If $V_{\text {out }}=V_{\text {in }}$, then since $\omega \gg 0$, passes high frequencies, hence High Pass Filter.
If $V_{\text {out }}=0$, then since $\omega \gg 0$, blocks high frequencies, hence passes only low frequencies, i.e., Low Pass Filter.
A.

B.

C.

D.

A. \qquad
C. \qquad D. \qquad

RC \& RL Charging and Discharging Curves

http://hades.mech.northwestern.edu/index.php/RC_and_RL_Exponential_Responses

Reactance Quiz

A. Resistive
B. Short Circuit
C. Short Circuit
D. Short Circuit
E. Short Circuit
F. Resistive
G. Short Circuit
H. Short Circuit

Complex Impedance Quiz

A. $R+\frac{X_{C} X_{L}}{X_{C}+X_{L}}$
B. $X_{L}+\frac{R X_{C}}{R+X_{C}}$
C. $X_{C}+\frac{R X_{L}}{R+X_{L}}$
D. $R+X_{C}+X_{L}$
E. $\frac{R\left(X_{C}+X_{L}\right)}{R+X_{C}+X_{L}}$
F. $\frac{X_{L}\left(R+X_{C}\right)}{R+X_{C}+X_{L}}$
G. $\frac{X_{C}\left(R+X_{L}\right)}{R+X_{C}+X_{L}}$
H. $\frac{1}{Z}=\frac{1}{R}+\frac{1}{X_{C}}+\frac{1}{X_{L}}=\frac{X_{C} X_{L}+R X_{L}+R X_{C}}{R X_{C} X_{L}}$
$Z=\frac{R X_{C} X_{L}}{R X_{C}+R X_{L}+X_{C} X_{L}}$

Passive Filter Quiz

A. Low Pass
B. High Pass
C. High Pass
D. Low Pass

