Test Four Topics: AC Reactance, Impedance, RC \& RL Circuit Analyses, DC Transients, Time Constants
Review materials include:
Reading Assignments \& Homework Problems
AC Course Notes
Review Problems including Reactance \& Impedance Quizzes
Types of possible exam questions and problems:
Equivalent Capacitances and Inductances (series \& parallel)
Calculate impedance (resistive, capacitive reactance, inductive reactance)
Sketch resistor-capacitor and resistor-inductor transient voltage curves
Determine DC transient voltages \& current for simple RC \& RL circuits
Calculate RC \& RL time constants
Application of Ohm's Law to AC Circuits
See Test Four Review Problems (attached)
For the test, you may use:
a calculator,
two page of YOUR OWN self-generated review notes
Note: Phones may NOT be used during the exam; NOT as calculators, NOT as Internet connections, NOT for resource retrieval (i.e., electronic copies of notes, files, tables, etc.), NOT for communications. If the exam proctor suspects the use of a phone during the exam, your test will be confiscated and zero points will be assigned.

Calculate Capacitive and Inductive Reactance
Calculate Complex Impedance
Calculate Series \& Parallel Equivalent Impedance for Resistors, Capacitors, Inductors, Impedances
Calculate RC and RL Time Constants
Sketch the current $\mathrm{i}(\mathrm{t})$ and voltage $\mathrm{v}(\mathrm{t})$ curves for charging and discharging RC circuits.
Sketch the current $\mathrm{i}(\mathrm{t})$ and voltage $\mathrm{v}(\mathrm{t})$ curves for charging and discharging RL circuits.

1. Calculate Series \& Parallel Impedance (See page 6 for Answers)

RCL Series Configuration
RCL Parallel Configuration
$\mathrm{R}=20 \Omega$
C $=50 \mu \mathrm{f}$
$\mathrm{L}=25 \mathrm{mh}$
$\mathrm{R}=220 \Omega$
C $=10 \mu \mathrm{f}$
$\mathrm{L}=720 \mathrm{mh}$
2. For an RC series circuit with an instantaneously imposed DC step voltage: Sketch the curves for the charging current i and for the capacitor voltage V_{C}
3. For a steady state DC, RL series circuit with an instantaneous removal of the DC voltage: Sketch the curves for the discharging current i and for the inductor voltage V_{L}
4. For Figure A, calculate the circuit impedance if the excitation frequency is 1800 Hz . (See page 6 for Answers)
5. For Figure B, calculate the circuit impedance if the excitation frequency is 900 KHz . (See page 6 for Answers)

Figure A
Figure B
6. Additional AC Circuit Analysis Problems

Basic Electronics for Scientists - James J. Brophy

5-3 Determine the rms current in the 1000- Ω resistor of the circuit in Fig. 5-22. Is the current inductive or capacitive? Answer: 6.5 mA ; capacitive

Figure 5-22

5-4 Calculate the equivalent impedance of the circuit in Fig. 5-23 at a frequency of 100 Hz . Repeat for 1000 Hz .

Answer: $0.198+j 2.63 \times 10^{6} \Omega ; 384+j 2.47 \times 10^{9} \Omega$

Figure 5-23
7. Reactance Quiz
8. Complex Impedance Quiz

For each of the above configurations for both $\omega=0$ and $\omega=\propto$, determine whether or not the resulting circuit appears as either a resistive circuit, a short circuit, or an open circuit. Check the appropriate blank(s).

For $\omega=0$

Figure
A.
B.
C.
D.

For $\omega=\propto$
Figure
E.
F.
G.
H.

Resistive Circuit
Short Circuit
\qquad
\qquad
\qquad
\qquad
\qquad

Complex Impedance Quiz

Devise formulas for each of the complex impedance configurations using R, X_{C}, and X_{L}.
Hint: Impedances in series add, i.e., $\mathrm{Z}=\mathrm{Z}_{1}+\mathrm{Z}_{2}$
Two impedances in parallel equal the "product over the sum", i.e. $Z=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}$
A.

E.

B.

C.

F.

D.

G.

H.

RC \& RL Charging and Discharging Curves

http://hades.mech.northwestern.edu/index.php/RC_and_RL_Exponential_Responses
RCL Series Configuration $\quad Z=20-j 40=45 @-63^{\circ}$

RCL Parallel Configuration $\quad Z=76-j 7=97 @ 3^{\circ}$
Figure A, Circuit Impedance (1800 Hz) Answer: Z = 300 + j6428
Figure B, Circuit Impedance (900 KHz)
Answer: Z = $3000+\mathrm{j} 141$

Reactance Quiz

A. Resistive
B. Short Circuit
C. Short Circuit
D. Short Circuit
E. Short Circuit
F. Resistive
G. Short Circuit
H. Short Circuit

Complex Impedance Quiz

A. $R+\frac{X_{C} X_{L}}{X_{C}+X_{L}}$
B. $X_{L}+\frac{R X_{C}}{R+X_{C}}$
C. $X_{C}+\frac{R X_{L}}{R+X_{L}}$
D. $R+X_{C}+X_{L}$
E. $\frac{R\left(X_{C}+X_{L}\right)}{R+X_{C}+X_{L}}$
F. $\frac{X_{L}\left(R+X_{C}\right)}{R+X_{C}+X_{L}}$
G. $\frac{X_{C}\left(R+X_{L}\right)}{R+X_{C}+X_{L}}$
H. $\frac{1}{Z}=\frac{1}{R}+\frac{1}{X_{C}}+\frac{1}{X_{L}}=\frac{X_{C} X_{L}+R X_{L}+R X_{C}}{R X_{C} X_{L}}$
$Z=\frac{R X_{C} X_{L}}{R X_{C}+R X_{L}+X_{C} X_{L}}$

