Topics

Complex Number Arithmetic
DC \& AC Power Dissipation in Resistors
Maximum Power Transfer
AC Power Factor
Decibel Calculations
$\mathrm{P} 2 / \mathrm{P} 1$ in $\mathrm{dB}=10 \log (\mathrm{P} 2 / \mathrm{P} 1)$
$\mathrm{V} 2 / \mathrm{V} 1$ in $\mathrm{dB}=20 \log (\mathrm{~V} 2 / \mathrm{V} 1)$
0 dB implies P2 $=\mathrm{P} 1$
Half Power Point $=-3 \mathrm{~dB}$ (Same as RMS voltage 0.707 Vpeak)
Power expressed in $\mathrm{dBm}=10 \log$ (Power in milliwatts)
Examples:
Use decibels to calculate the following:
a. Given the ratio of two voltages $\mathrm{V}_{2} / \mathrm{V}_{1}=25$; express the voltage ratio in dB . $\quad(+28 \mathrm{~dB})$
b. Given the power ratio of $\mathrm{P}_{2} / \mathrm{P}_{1}=50$; express the power ratio in dB . $(+17 \mathrm{~dB})$
c. Express 400 milliwatts in dBm . (+26 dBm)
d. Express 400 microwatts (0.400 milliwatts) in dBm. $(-4 \mathrm{dBm})$
e. For additional examples - See Course Handouts

Transformer Calculations (Turns, Current, Voltage, Impedance, Power, Phase Dots)
Power Supplies
Calculate power supply current, voltage, component values

Handouts

Fall 2015 Course Notes Test 3
Complex Numbers
Decibels
Transformers
Power Supplies (Rectifiers)

