Bioelectronics - Test One Review Notes

Charge	Q = C V	Coulombs
Current	I = dQ/dt	Amperes
Ohm's Law	V = I R	Volts
Joule's Law	$\mathbf{P} = \mathbf{V}\mathbf{I} = \mathbf{I}^{2}\mathbf{R}$	Watts
Kirchoff's Law		
Sum of the Loop Voltages $= 0$		
Sum o	f the Node Currents =	= 0

Engineering Notation

Sketch Thevinen & Norton Equivalent Circuits Describe how to calculate Equivalent Voltage, Current, Resistance from measurements

Thevenin's Theorem and Equivalent Circuit Series voltage source $\{V_{eq}\}$ and resistor equivalent $\{R_{eq}\}$ Any network of resistors and sources having two output terminals,

may be replaced by a series combination of a voltage source V_{eq} and a resistance R_{eq} .

The equivalent emf V_{eq} is the potential at the output terminals when the output current is zero (open-circuit voltage). The equivalent resistance R_{eq} is the ratio of the V_{eq} to the output current when R_{Load} is zero (short-circuit current).

Norton's Theorem and Equivalent Circuit Parallel Current source $\{I_{eq}\}$ and resistor equivalent $\{R_{eq}\}$ Any network of resistors and sources having two output terminals, may be replaced by a parallel combination of a current source I_{eq} and a resistance R_{eq} . The current source I_{eq} is the short-circuit current in the output terminals, and the resistance R_{eq} is the same as for Thevenin's Theorem.

Calculate Series & Parallel Equivalent Resistance

Sketch Series Resistors Voltage Divider (including voltage source) Calculate voltage across load resistor Voltage Divider (Resistors in Series with Voltage Source) $V_2 = V (R_2 / (R_1 + R_2))$ Sketch Parallel Resistors Current Divider (including current source)

Calculate current through load resistor Current Divider (Resistors in Parallel with Current Source) $I_2 = I (R_1 / (R_1 + R_2))$

Course Handouts Electrical Theory (PowerPoint)