Delta \& Y Configurations, Principles of Superposition, Resistor Voltage Divider Designs
Use following techniques to solve for current through and voltage across a network resistor:
Equivalent Resistances
Kirchoff's Voltage Law
Kirchoff's Current Law
Principle of Superposition
Thevenin Equivalent
Norton Equivalent
Sketch Series Resistors Voltage Divider (including voltage source)
Calculate voltage across load resistor
Voltage Divider (Resistors in Series with Voltage Source) $\quad V_{2}=V\left(R_{2} /\left(R_{1}+R_{2}\right)\right.$
Sketch Parallel Resistors Current Divider (including current source)
Calculate current through load resistor
Current Divider (Resistors in Parallel with Current Source) $\quad I_{2}=I\left(R_{1} /\left(R_{1}+R_{2}\right)\right.$
Design Voltage Divider Network (10% rule for two resistors and voltage source) given output requirements
Convert Delta configuration to equivalent Wye configuration
Convert Wye configuration to equivalent Delta configuration
Solve Voltage Source \& Current Source Circuit Network Problems (using Superposition)
Attachments:
Delta \& Y Configurations and Conversions (Figures \& Equations)
Five Resistor Equivalent
Y to Delta \& Delta to Y Practice Conversion Problems
Principle of Superposition Example Problem
Principle of Superposition (Figure 30-3 Giorgio Rizzoni 2009).pdf
Voltage Divider Design Notes \& Practice Problem

Y to Delta \& Delta to Y Conversions

Y to Delta Conversion
$\mathrm{R}_{1}=\frac{\mathrm{R}_{\mathrm{a}} \mathrm{R}_{\mathrm{b}}+\mathrm{R}_{\mathrm{b}} \mathrm{R}_{\mathrm{c}}+\mathrm{R}_{\mathrm{a}} \mathrm{R}_{\mathrm{c}}}{\mathrm{R}_{\mathrm{c}}}$

$$
\mathrm{R}_{2}=\frac{\mathrm{R}_{\mathrm{a}} \mathrm{R}_{\mathrm{b}}+\mathrm{R}_{\mathrm{b}} \mathrm{R}_{\mathrm{c}}+\mathrm{R}_{\mathrm{a}} \mathrm{R}_{\mathrm{c}}}{\mathrm{R}_{\mathrm{a}}}
$$

$$
\mathrm{R}_{3}=\frac{\mathrm{R}_{\mathrm{a}} \mathrm{R}_{\mathrm{b}}+\mathrm{R}_{\mathrm{b}} \mathrm{R}_{\mathrm{c}}+\mathrm{R}_{\mathrm{a}} \mathrm{R}_{\mathrm{c}}}{\mathrm{R}_{\mathrm{b}}}
$$

Delta to Y Conversion

$$
\mathrm{R}_{\mathrm{a}}=\frac{\mathrm{R}_{1} \mathrm{R}_{3}}{\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}}
$$

$$
\mathrm{R}_{\mathrm{b}}=\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}}
$$

$$
\mathrm{R}_{\mathrm{c}}=\frac{\mathrm{R}_{2} \mathrm{R}_{3}}{\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}}
$$

Calculate the equivalent resistance for a five resistor network (See Figure 1.)
Step 1. Divide into two parts.
Delta(R1 R5 R4) and "V"(R2 R3)

C

\square

Figure 1.

to $\mathrm{Y}(\mathrm{Rc} \mathrm{Ra} \mathrm{Rb})$

Step 2. Delta(R1 R5 R4) to Y(Rc Ra Rb) - continued Note: Rotated and Reflected Labeling
$\mathrm{Rc}=\frac{\mathrm{R} 1 \mathrm{R} 4}{\mathrm{R} 1+\mathrm{R} 4+\mathrm{R} 5}$.
$\mathrm{Rb}=\frac{\mathrm{R} 4 \mathrm{R} 5}{\mathrm{R} 1+\mathrm{R} 4+\mathrm{R} 5}$.
$\mathrm{Ra}=\frac{\mathrm{R} 1 \mathrm{R} 5}{\mathrm{R} 1+\mathrm{R} 4+\mathrm{R} 5}$.
Step 4.
$R b$ in Series with $R 3$ therefore $R b R 3=R b+R 3$
Ra in Series with R 2 therefore $\mathrm{RaR} 2=\mathrm{Ra}+\mathrm{R} 2$

Step 5.

RbR 3 in Parallel with $\mathrm{RaR} 2=(\mathrm{RbR} 3) \mathrm{x}(\mathrm{RaR} 2)$

$$
(\mathrm{RbR} 3)+(\mathrm{RaR} 2)
$$

Step 6.

Rc in Series with Parallel RbR3 || RaR2
Step 7. $\mathrm{Req}=\mathrm{Rc}+$ Parallel $\mathrm{RbR} 3 \| \mathrm{RaR} 2$

Y to Delta \& Delta to Y Practice Problem Conversions

1. Write closed-form solutions for each of the following configurations.

Figure A

Figure B

Figure C
2. For Figures A, B, C,

Find single equivalent resistive values for $R_{1}=5, R_{2}=7, R_{3}=8, R_{4}=3, R_{5}=4$
3. Answers:

Figure A. Req $=5.74$
Figure B. $\operatorname{Req}=2.36$
Figure C. Req $=5.66$

The overall effect for two or more stimuli to a linear system is equal to the sum of individual effects.
Refer to Figure 1.
Objective:
a. Calculate $\mathrm{V}_{\text {RLoad }}$
b. Calculate $\mathrm{I}_{\text {RLoad }}$

Given:

$$
\begin{aligned}
& \mathrm{I}=3 \mathrm{~A} \\
& \mathrm{~V}=9 \mathrm{~V} \\
& \mathrm{R}_{1}=3 \Omega \\
& \mathrm{R}_{2}=4 \Omega \\
& \mathrm{R}_{\text {Load }}=2 \Omega
\end{aligned}
$$

Figure 1.
Procedure:
I. Short all Voltage Sources \quad Calculate $V_{\text {RLoad }}$ (Generated by Current Sources) $\quad V_{\text {RLoad }}=2.77 \mathrm{~V}$
II. Open all Current Sources \quad Calculate $\mathrm{V}_{\text {RLoad }}$ (Generated by Voltage Sources) $\quad \mathrm{V}_{\text {RLoad }}=2.08 \mathrm{~V}$
III. Calculate overall results by adding results from Step I and Step II $\quad \mathrm{V}_{\text {RLoad }}=2.77+2.08=4.85$ Volts

Calculate $\mathrm{I}_{\text {RLoad }}=\mathrm{V}_{\text {Rload }} / \mathrm{R}_{\text {Load }}=4.85 \mathrm{~V} / 2 \Omega=2.43 \mathrm{Amps}$

Problem

Determine the voltage across resistor R in the circuit of Figure 3.30.

Solution

Known Quantities: The values of the voltage sources and of the resistors in the circuit of Figure 3.30 are $I_{B}=12 \mathrm{~A} ; V_{G}=12 \mathrm{~V} ; R_{B}=1 \Omega ; R_{G}=0.3 \Omega ; R=0.23 \Omega$.

Find: The voltage across R.

(a)

Figure $\mathbf{3 . 3 0}$ (a) Circuit used to demonstrate the principle of superposition

(b)

Figure $\mathbf{3 . 3 0}$ (b) Circuit obtained by suppressing the voltage source

(c)

Analysis: Specify a ground node and the polarity of the voltage across R. Suppress the voltage source by replacing it with a short circuit. Redraw the circuit, as shown in Figure 3.30(b), and apply KCL:

$$
\begin{aligned}
& -I_{B}+\frac{V_{R-I}}{R_{B}}+\frac{V_{R-I}}{R_{G}}+\frac{V_{R-I}}{R}=0 \\
& V_{R-I}=\frac{I_{B}}{1 / R_{B}+1 / R_{G}+1 / R}=\frac{12}{1 / 1+1 / 0.3+1 / 0.23}=1.38 \mathrm{~V}
\end{aligned}
$$

Suppress the current source by replacing it with an open circuit, draw the resulting circuit, as shown in Figure 3.30(c), and apply KCL:

$$
\begin{aligned}
& \frac{V_{R-v}}{R_{B}}+\frac{V_{R-v}-V_{G}}{R_{G}}+\frac{V_{R-v}}{R}=0 \\
& V_{R-v}=\frac{V_{G} / R_{G}}{1 / R_{B}+1 / R_{C}+1 / R}=\frac{12 / 0.3}{1 / 1+1 / 0.3+1 / 0.23}=4.61 \mathrm{~V}
\end{aligned}
$$

Finally, we compute the voltage across R as the sum of its two components:

$$
V_{R}=V_{R-t}+V_{R-v}=5.99 \mathrm{~V}
$$

Figure $\mathbf{3 . 3 0}$ (c) Circuit obtained by suppressing the current source

Given values for voltage source and $\mathrm{R}_{\text {Load }}$ voltage and current specifications ($\mathrm{V}_{\mathrm{Load}} \& \mathrm{I}_{\text {Load }}$); Determine values for Bias Resistor $\left(R_{1}\right)$ and Bleed Resistor $\left(R_{2}\right)$.

Step 1. Calculate Load Resistor $\left(=V_{\text {Load }} / I_{\text {Load }}\right)$
Step 2. Calculate $I_{2}($ Bleed Current $)=10 \% I_{\text {Load }}$
Step 3. Select R_{2} (Bleed Resistor) based on I_{2} such that $\mathrm{R}_{2}=\mathrm{V}_{\mathrm{R} 2} / \mathrm{I}_{2}$ (Note: $\left.\mathrm{V}_{\mathrm{R} 2}=\mathrm{V}_{\mathrm{RLoad}}\right)$
Step 4. Calculate $\mathrm{I}_{\text {Total }}=\mathrm{I}_{\text {Load }}+\mathrm{I}_{2}$
Step 5. Calculate $\mathrm{R}_{1}($ Bias Resistor $)=\left(\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\text {Load }}\right) /\left(\mathrm{I}_{\text {Total }}\right)$
Example Problem:

Given:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{S}}=12 \text { volts } \\
& \mathrm{V}_{\text {Load }}=7.5 \mathrm{~V} @ 50 \mathrm{~mA}
\end{aligned}
$$

Find:

$\mathrm{R}_{\text {Load }}=150$ Ohms
Bleed Resistor $=1500$ Ohms
Bias Resistor $=82$ Ohms
Check Results:
Note - by design
$\mathrm{I}_{\text {Total }}=1.1 \times \mathrm{I}_{\text {Load }}=55 \mathrm{~mA}$
$\mathrm{I}_{\text {Bleed }}=0.1 \times \mathrm{I}_{\text {Load }}=5 \mathrm{~mA}$
$\mathrm{R}_{\text {Bleed }}=10 \times \mathrm{R}_{\text {Load }}=1500$ Ohms
$\mathrm{V}_{\text {RBleed }}=\mathrm{R}_{\text {Bleed }} \times \mathrm{I}_{\text {Bleed }}=1500 \times 5 \times 10^{-3}=7.5 \mathrm{~V}$
Sanity Check: $\quad \mathrm{V}_{\text {RBleed }}=\mathrm{V}_{\text {Load }}=7.5 \mathrm{~V}$!!!!!
Sanity Check: $\quad V_{\text {RBias }}=V_{S}-V_{\text {RBleed }}=12-7.5=4.5 \mathrm{~V}$
$\mathrm{V}_{\text {RBias }}=\mathrm{I}_{\text {Tota }} 1 \times \mathrm{R}_{\text {Bias }}=55 \times 10-^{-3} \times 82=4.5 \mathrm{~V}$!!!!!!!!!
Short Cut Closed Form:
$\mathrm{R}_{\text {Bias }}=\left(\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\text {Load }}\right) /\left(1.1 \times \mathrm{I}_{\text {Load })}=(12-7.5) /(1.1 \times 0.050)=4.5 / 0.055=82 \mathrm{Ohms}\right.$
$\mathrm{R}_{\text {Bleed }}=\mathrm{V}_{\text {Load }} /\left(0.1 \times \mathrm{I}_{\text {Load }}\right)=7.5 /(0.1 \times 0.050)=7.5 / 0.005=1500 \mathrm{Ohms}$

