Alternating Current

Capacitive & Inductive Reactance and Complex Impedance

RC & RL Circuit Analyses (DC Transients, Time Constants, Steady State)

RC & RL Passive Filters

Electrical Theory (Alternating Current)

Ohm's Law for AC $I_{RMS} = V_{RMS} / Z$ where Z is the Complex Impedance

$$|Z| = [(R^2 + (XL - XC)^2)]^{1/2}$$

$$\theta = \tan^{-1}[(XL - XC)/R]$$

Power Factor $\cos \theta = R / Z$

Joule's Law Average Power = $\frac{1}{2}$ V_{peak} I_{peak} $\cos \theta = V_{RMS}$ I_{RMS} $\cos \theta$ Watts

Purely Resistive Element ($\theta = 0$, $\cos \theta = 1$) Average Power = $\frac{1}{2}$ V_{peak} I_{peak} = V_{RMS} I_{RMS} (Watts)

ELI the ICE man Component Voltage / Current

Resistor In Phase Capacitor Lags Inductor Leads

Capacitive & Inductive Reactance and Complex Impedance

$$\omega = 2\pi f$$
 $f = 0.159\omega$

Capacitive Reactance $X_C = 1/\omega C = 1/(2\pi f C) = 0.159/f C$

Inductive Reactance $X_L = \omega L = 2\pi f L$

Complex Impedance

R in series with series CL $Z = R + j(2\pi f L - 1/(2\pi f C))$ Impedance is a minimum at resonance

R in series with parallel CL $Z = R + j(2\pi f L / (1 - (2\pi f)^2 LC))$ Impedance is a maximum at resonance

Time Constants

RC Circuit Time Constant = R C RL Circuit Time Constant = L/R

Equations and Relationships

$$X_L = 2\pi f L$$

$$X_{C} = \frac{1}{2\pi f C}$$

RL Circuit

RCL Circuit

$$f_0 = \frac{1}{2\pi RC}$$

$$f_0 = \frac{1}{2\pi \ L/R}$$

$$f_0 = \frac{1}{2\pi RC}$$
 $f_0 = \frac{1}{2\pi L/R}$ $f_0 = \frac{1}{2\pi \sqrt{LC}}$

Cut-off Frequency Resonant Frequency

Time Constant

$$t = RC$$

$$t = L/R$$

$$t = \frac{R\sqrt{C/L}}{2}$$

RCL Series Impedance

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

R&CL Parallel Impedance

$$Z = \sqrt{R^2 + \left(\frac{X_L X_C}{X_L - X_C}\right)^2}$$

RCL Parallel Impedance

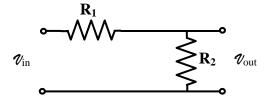
$$Z = \frac{R X_L X_C}{X_L X_C - R(X_L - X_C)}$$

Common Configuration



Notes:

When $\omega = 0$, $X_C \to \infty$, i.e., **C** appears as an open circuit, so that $V_{out} = \frac{R_2}{R_1 + R_2}$



When $\omega >> 0$, $X_C = 0$, i.e., **C** appears as a short circuit, so that $V_{out} = 0$

