Review of Complex Numbers

A complex number represents a point in a 2D space. The value of the complex number can be represented either by its real part (a) and imaginary part (b), or by its magnitude (M) and its phase angle (θ), as shown in the figure below.

$$
\begin{aligned}
& \mathbf{W}=\mathrm{a}+\mathrm{jb} \\
& \quad=M e^{j \theta}=(M \cos \theta)+j(M \sin \theta)
\end{aligned}
$$

Computations involving two complex numbers: $\mathrm{x}=\mathrm{a}+\mathrm{jb}=M e^{j \theta} \quad$ and $\mathrm{y}=\mathrm{c}+\mathrm{jd}=N e^{j \varphi}$
(a) Addition and subtraction:

$$
z=x \pm y=(a+c)+j(b+d)
$$

(b) Multiplication:

$$
\begin{aligned}
& \mathrm{z}=\mathrm{xy}=(\mathrm{a}+\mathrm{jb})(\mathrm{c}+\mathrm{jd})=(\mathrm{ac}-\mathrm{bd})+\mathrm{j}(\mathrm{bc}+\mathrm{ad}) \\
& \mathrm{z}=\mathrm{xy}=\left(M e^{j \theta}\right)\left(N e^{j \varphi}\right)=(M N) e^{j(\theta+\varphi)}
\end{aligned}
$$

Therefore, Magnitude of $\mathrm{z}=$ (magnitude of x$) \cdot($ magnitude of y)
Phase angle of $z=($ phase angle of $x)+($ phase angle of $y)$
(c) Division:

$$
\begin{aligned}
& z=\frac{x}{y}=\frac{a+j b}{c+j d}=\frac{(a+j b)(c-j d)}{(c+j d)(c-j d)}=\left(\frac{a c+b d}{c^{2}+d^{2}}\right)+j\left(\frac{b c-a d}{c^{2}+d^{2}}\right) \\
& z=\frac{x}{y}=\frac{M e^{j \theta}}{N e^{j \varphi}}=\left(\frac{M}{N}\right) e^{j(\theta-\varphi)}
\end{aligned}
$$

Therefore, Magnitude of $z=($ magnitude of $x) \div($ magnitude of $y)$
Phase angle of $z=$ (phase angle of $x)-($ phase angle of $y)$
$1 \mathrm{Bel}=\log ($ Power $2 /$ Power 1$)$
1 decibel $=1 \mathrm{~dB}=0.1 \mathrm{Bel}$, hence $10 \mathrm{~dB}=1 \mathrm{Bel}$
To express a Power Ratio in dB's, use $\mathrm{dB}=10 \log ($ Power $2 /$ Power1)
Let Power2 $=2$ Power1
Power Ratio in dB's $=10 \log (2$ Power1 $/$ Power 1$)=10 \log (2)=+3.01$
Let Power2 $=0.5$ Power1
Power Ratio in dB's $=10 \log (0.5$ Power1 $/$ Power 1$)=10 \log (0.5)=-3.01$
-3 dB is often expressed as " 3 dB Down" which is the half power point (Power2 $=1 / 2$ Power1)
Let Power2 = Power1
Power Ratio in dB's = $10 \log ($ Power1 $/$ Power 1$)=10 \log (1) 0$
$\mathrm{dB}=0$ does not imply zero power but rather a power ratio of one-to-one
$\mathrm{dB}=0$ can be used as a zero reference; that is to say, set your reference level to a particular value and then use the dB scale to refer all other values to that reference level.

Examples: Reference Level $=400$ watts.
200 watts $=-3 \mathrm{~dB}$
800 watts $=+3 \mathrm{~dB}$
400 watts $=0 \mathrm{~dB}$
4000 watts $=+10 \mathrm{~dB}$
40 watts $=-10 \mathrm{~dB}$
650 watts $=+2.1 \mathrm{~dB}$
65 watts $=-7.9 \mathrm{~dB}$
100 watts $=-6 \mathrm{~dB}$
$2,500,000$ watts $=+38 \mathrm{~dB}$
Note: A reference of 1 milliwatts is used for dBm 's
1 milliwatts $=10 \log (1 / 1)=0 \mathrm{dBm}$
5 milliwatts $=10 \log (5 / 1)=+7 \mathrm{dBm}$
500 milliwatts $=+27 \mathrm{dBm}$
0.001 milliwatts $=-30 \mathrm{dBm}$

For Voltage, Power $=\mathrm{IE}=(\mathrm{E} / \mathrm{R}) \mathrm{E}=\mathrm{E}^{2} / \mathrm{R}$
To express a Voltage Ratio in dB's, use $\mathrm{dB}=10 \log \left(\right.$ Power $_{2} /$ Power $\left.\left._{1}\right)=10 \log \left[\left(\mathrm{E}_{2}^{2} / \mathrm{R}\right) / \mathrm{E}_{1}{ }^{2} / \mathrm{R}\right)\right]$ $\left.10 \log \left[\left(\mathrm{E}_{2}^{2} / \mathrm{R}\right) / \mathrm{E}_{1}^{2} / \mathrm{R}\right)\right]=10 \log \left(\mathrm{E}_{2}^{2} / \mathrm{E}_{1}^{2}\right)=20 \log \left(\mathrm{E}_{2} / \mathrm{E}_{1}\right)$

For Power Ratio $\mathrm{dB}=+3, \quad 20 \log \left(\mathrm{E}_{2} / \mathrm{E}_{1}\right)=+3$
For Power Ratio dB $=-3, \quad 20 \log \left(E_{2} / E_{1}\right)=-3$
For Power Ratio $\mathrm{db}=0, \quad 20 \log \left(\mathrm{E}_{2} / \mathrm{E}_{1}\right)=-0.15$ and $\mathrm{E}_{2} / \mathrm{E}_{1}=0.707=\operatorname{SQRT}(2) / 2$

Ideal Transformer Relations (Equations)

Definitions:
Primary Winding (input - subscript ${ }_{1}$)
Secondary Winding (output - subscript ${ }_{2}$)
Turns Ratio $=\mathrm{n}_{1} / \mathrm{n}_{2}$ (number of turns on primary winding / number of turns on secondary winding)
Voltage Ratio: $\mathrm{V}_{1} / \mathrm{V}_{2}=\mathrm{n} 1 / \mathrm{n}_{2}$ (Directly Proportional)
Current Ratio: $\mathrm{I}_{1} / \mathrm{I}_{2}=\mathrm{n}_{2} / \mathrm{n}_{1} \quad$ (Inversely Proportional)
Power Ratio: 1 to 1 (Power Out $=$ Power In) Ideal Power Out $=e \times$ Power In where e is the Efficiency Factor $(e<1)$

Impedance Ratio: $\mathrm{Z}_{1} / \mathrm{Z}_{2}=\left(\mathrm{n}_{1} / \mathrm{n}_{2}\right)^{2}$
For additional information, refer to
Practical Electronics for Inventors, 3ed pp 374-402

Transformer Problems and Questions

1. Given an ideal transformer with primary turns $=9600$ and secondary turns $=480$, assume 100% efficiency. For input voltage $=120 \mathrm{VAC}$ and output impedance $=16 \mathrm{ohms}$;
a. Calculate output voltage
b. Calculate output current
c. Calculate output power
b. Calculate input current
c. Calculate input power
b. Calculate input impedance
2. Determine the turns ratio for an impedance matching transformer where the first stage input impedance is 50 ohms and the second stage output impedance is 8 ohms.

Half-Wave Rectifier Equivalent DC Output Voltage

Example

Given:

$$
v_{\mathrm{in}}(\mathrm{RMS})=110 \mathrm{~V}(60 \mathrm{HZ})
$$

Turns Ratio 10:1

Find: $\mathrm{v}_{\mathrm{out}}(\mathrm{DC}$ Effective)

$$
\begin{aligned}
& v_{\text {in }}(\text { Peak })=1.414 v_{\text {in }}(\text { RMS })=1.414 \times 110=155.5 \mathrm{~V} \\
& \left.v_{\text {out }} \text { (Peak }\right)=1 / 10 v_{\text {in }}(\text { Peak })=1 / 10 \times 155.5=15.6 \mathrm{~V} \\
& v_{\text {Diode }}=15.6-0.7=14.9 \mathrm{~V} \\
& V_{\text {out }}(\text { DC Effective })=0.318 \mathrm{v}_{\text {Diode }}=0.318 \times 14.9 \approx 4.7 \mathrm{VDC}
\end{aligned}
$$

Exercise \#1

Given: $v_{\text {in }}(\mathrm{RMS})=110 \mathrm{~V}(60 \mathrm{HZ})$ Turns Ratio 5:1
Find: $V_{\text {out }}($ DC Effective $)$
Answer: 9.7 VDC

Exercise \#2

Given: $v_{\text {in }}($ RMS $)=120 \mathrm{~V}(60 \mathrm{HZ})$ Turns Ratio 5:1
Find: $V_{\text {out }}($ DC Effective $)$

Answer: 10.6 VDC

Example

Given:
$v_{\text {in }}(\mathrm{RMS})=110 \mathrm{~V}(60 \mathrm{HZ})$
Turns Ratio 10:1
Find: $V_{\text {out }}$ (DC Effective)
$v_{\text {in }}($ Peak Center $)=1.414 v_{\text {in }}($ RMS $)=1.414 \times 110=155.5 \mathrm{~V}$
$v_{\text {out }}($ Peak $)=(1 / 2)(1 / 10) v_{\text {in }}($ RMS $)=1 / 20 \times 155.5=7.8 \mathrm{~V}$
$v_{\text {Diode }}=7.8-0.7=7.1 \mathrm{~V}$
$V_{\text {out }}($ DC Effective $)=0.636 v_{\text {Diode }}=0.636 \times 7.1 \approx 4.5 \mathrm{VDC}$

Exercise \#1

Given: $v_{\text {in }}($ RMS $)=110 \mathrm{~V}(60 \mathrm{HZ})$ Turns Ratio 5:1
Find: $V_{\text {out }}($ DC Effective $)$
Answer: 9.5 VDC

Exercise \#2

Given: $v_{\text {in }}($ RMS $)=120 \mathrm{~V}(60 \mathrm{HZ})$ Turns Ratio 5:1
Find: $V_{\text {out }}$ (DC Effective)

Full-Wave Bridge Rectifier Equivalent DC Output Voltage

Example

Given:
$v_{\text {in }}(\mathrm{RMS})=110 \mathrm{~V}(60 \mathrm{HZ})$
Turns Ratio 10:1
Find: $V_{\text {out }}($ DC Effective $)$
$v_{\text {in }}($ Peak $)=1.414 v_{\text {in }}($ RMS $)=1.414 \times 110=155.5 \mathrm{~V}$
$v_{\text {out }}($ Peak $)=1 / 10 v_{\text {in }}($ RMS $)=1 / 10 \times 155.5=15.6 \mathrm{~V}$
$v_{\text {Diode }}=15.6-2(0.7)=14.2 \mathrm{~V}$
$\mathrm{v}_{\text {out }}($ DC Effective $)=0.636 \mathrm{v}_{\text {Diode }}=0.636 \times 14.2 \approx 9 \mathrm{VDC}$

Exercise \#1

Given: $v_{\text {in }}($ RMS $)=110 \mathrm{~V}(60 \mathrm{HZ})$ Turns Ratio 5:1
Find: $V_{\text {out }}(\mathrm{DC}$ Effective)
Answer: 18.9 VDC

Exercise \#2

Given: $v_{\text {in }}($ RMS $)=120 \mathrm{~V}(60 \mathrm{HZ})$ Turns Ratio 5:1
Find: $V_{\text {out }}$ (DC Effective)
Answer: 20.7 VDC

Filtering

$v_{\text {ripple(peak- peak) }}=I_{\text {out(DC) }} / 2 f C$
$I_{\text {out(DC) }}=V_{\text {out }}(\mathrm{DC}) / \mathrm{R}_{\text {Load }}$

Two Steps

1. Assume $V_{\text {out }}(\mathrm{DC})$ (Without filtering, i.e., use peak of the rectified wave, NOT the DC average value.)
2. Solve for $I_{\text {out(DC) }}$ and $v_{\text {ripple(peak- peak) }}$
3. Recalculate $V_{\text {out }}(\mathrm{DC}) \mathrm{Load}=V_{\text {out }}(\mathrm{DC})($ without filtering $)-\left[v_{\text {ripple(peak- peak }}\right] / 2$

Example

Given:
$v_{\text {in }}(\mathrm{RMS})=110 \mathrm{~V}(60 \mathrm{HZ})$
Turns Ratio 10:1
$\mathrm{R}_{\text {Load }}=100 \Omega \quad \mathrm{C}=1000 \mu \mathrm{~F} \quad \mathrm{f}=60 \mathrm{~Hz}$
Find: $V_{\text {out }}(\mathrm{DC})$ Load
From Full-Wave Bridge Rectifier (from Example page 3, above) $\quad V_{\text {out }}(\mathrm{DC})$ (without filtering) $=14.2$ VDC
$I_{\text {out(DC) }}=V_{\text {out }}(\mathrm{DC}) / \mathrm{R}_{\text {Load }}=14.2 / 100=0.142 \mathrm{~A}=142 \mathrm{~mA}$
$v_{\text {ripple(peak- peak) }}=I_{\text {out(DC) }} / 2 f C=0.142 /\left(2 \times 60 \times 1000 \times 10^{-6}\right)=1.18 \mathrm{~V}$
$V_{\text {out }}(\mathrm{DC}) \mathrm{Load}=V_{\text {out }}(\mathrm{DC})($ without filtering $)-\left[v_{\text {ripple(peak- peak }}\right] / 2=14.2-(1.18) / 2=13.6 \mathrm{VDC}$

Exercise

Given:

$$
\begin{aligned}
& V_{\text {in }}(\mathrm{RMS})=120 \mathrm{~V}(60 \mathrm{HZ}) \text { Turns Ratio } 5: 1 \\
& \mathrm{R}_{\text {Load }}=240 \Omega \quad \mathrm{C}=470 \mu \mathrm{~F} \quad \mathrm{f}=60 \mathrm{~Hz} \\
& V_{\text {out }}(\mathrm{DC})(\text { without filtering })=32.5 \mathrm{VDC} \text { (from Problem, page } 3 \text {, above. Note } 32.5 \text { not } 32.5 \times .636=20.7 \text {) }
\end{aligned}
$$

Find: $V_{\text {out }}(\mathrm{DC})$ Load
Answer: $I_{\text {out(DC) }}=136 \mathrm{~mA} \quad V_{\text {ripple(peak- peak })}=2.4 \mathrm{~V} \quad V_{\text {out }}(\mathrm{DC}) \mathrm{Load}=31.3 \mathrm{VDC}$

Regulated Power Supply

Scanned Images: Electronic Devices, Ali Aminian \& Marian Kazimierczuk, Pearson-Prentice Hall, 2004

