Diode Characteristics

Source: James Brophy, Basic Electronics for Scientists, $5^{\text {th }}$ Edition

Figure 6.18 Characteristics of a diode.

Figure 3-2 Current-voltage characteristics of germanium and silicon junction diodes.

Figure 3-3 Effect of temperature on current-voltage characteristics of silicon junction diode.

Forward and Reverse Biasing of the PN Junction

Reference: Aminian and Kazimierczuk, Electronic Devices: A Design Approach, 2004

(a)

(b)

(c)

Figure 1-6 Conduction in semiconductor materials: (a) very little current flow in pure silicon; (b) electron flow in n-type material; (c) hole flow in p-type material.

Forward and Reverse Biasing of the PN Junction - continued

Figure 1-9: Blocks of p-type and n-type semiconductors before they are joined

Figure 1-10: Blocks of p-type and n-type semiconductors at the instant they are joined

Figure 1-11: The $p-n$ junction after recombination of electron-hole pairs

Figure 1-12: Forward biasing the $p-n$ junction with an external source

Figure 1-13: Reverse biasing the p - n junction with an external source

Diode Rectifiers, Clippers, and Clamps

Source: James Brophy, Basic Electronics for Scientists, $5{ }^{\text {th }}$ Edition

Figure 3-8 (a) Full-wave rectifier and (b) waveforms.

Figure 3-10 Voltage-doubler rectifier yields dc output voltage equal to twice peak input voltage.

Figure 3-22 Diode clipper.

Figure 3-23 Maximum amplitudes in output waveform of diode clipper are limited to values of bias voltage.

Figure 3-24 Diode clamp.

Figure 3-25 Negative peak of output waveform is clamped at zero when $V=0$ in diode clamp circuit of Fig. 3-24.

Diode Circuits

Example

Calculate V_{0}
$\mathrm{V}=0.7+\mathrm{I}_{\mathrm{D}} \mathrm{R}_{1}+0.7+\mathrm{I}_{\mathrm{D}} \mathrm{R}_{2}$
$\mathrm{V}-0.7-0.7=\mathrm{I}_{\mathrm{D}}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$
$\mathrm{I}_{\mathrm{D}}=[\mathrm{V}-(0.7+0.7)] /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$

$\mathrm{I}_{\mathrm{D}}=14.6 /(2000+1000)$
$\mathrm{I}_{\mathrm{D}}=4.9 \mathrm{~mA}$
$V_{0}=0.7+\mathrm{I}_{\mathrm{D}} \mathrm{R}_{2}$
$V_{0}=0.7+0.0049 \times 1000=0.7+4.9=5.6 \mathrm{~V}$

Exercise

Calculate V_{0} for $\mathrm{V}=15 \mathrm{~V}, \mathrm{R} 1=2200 \Omega, \mathrm{R} 2=3300 \Omega$
Answer: $\mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~mA} \quad V_{0}=8.9 \mathrm{~V}$

Example

Calculate V_{0}
$+15=0.7+\mathrm{I}_{\mathrm{D}} \mathrm{R}_{1}+0.7+\mathrm{I}_{\mathrm{D}} \mathrm{R}_{2}-5$
20-0.7-0.7 $=\mathrm{I}_{\mathrm{D}}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$
$\mathrm{I}_{\mathrm{D}}=18.6 /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$
$\mathrm{I}_{\mathrm{D}}=18.6 /(2200+3300)$

$\mathrm{I}_{\mathrm{D}}=3.38 \mathrm{~mA}$
$V_{0}=0.7+\mathrm{I}_{\mathrm{D}} \mathrm{R}_{2}-5.0$
$V_{0}=0.7+0.00338 \times 3300-5.0=0.7+11.2-5.0=6.9 \mathrm{~V}$

Exercise

Calculate V_{0} for $\mathrm{V} 1=+10 \mathrm{~V} \quad \mathrm{~V} 2=-5 \mathrm{~V}$

$$
\mathrm{R} 1=1100 \Omega \quad \mathrm{R} 2=2200 \Omega
$$

Answer: $\mathrm{I}_{\mathrm{D}}=4.1 \mathrm{~mA} \quad V_{0}=4.8 \mathrm{~V}$

Example (Refer to the Diode Circuit Lecture Notes)
Calculate the Current I_{D}

1. Remove Diode (Replace by V_{TH})

For Voltage Divider $\mathrm{V}_{\mathrm{TH}}=\mathrm{V}\left[\mathrm{R}_{2} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)\right]$

$$
\mathrm{V}_{\mathrm{TH}}=16[4700 /(5100+4700)]=7.67 \mathrm{~V}
$$

2. Short $\mathrm{V}_{\text {source }}\left(\mathrm{R}_{1}\right.$ in parallel with $\left.\mathrm{R}_{2}\right)$

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{EQ}}=\left(\mathrm{R}_{1} \times \mathrm{R}_{2}\right) /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) \\
& \mathrm{R}_{\mathrm{EQ}}=(5100 \times 4700) /(5100+4700)=2446 \Omega
\end{aligned}
$$

3. Redraw with $\mathrm{V}_{\mathrm{TH}}, \mathrm{R}_{\mathrm{EQ}}$, Diode

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{TH}}=\mathrm{I}_{\mathrm{D}} \mathrm{R}_{\mathrm{EQ}}+\mathrm{V}_{\mathrm{D}} \quad \mathrm{I}_{\mathrm{D}}=\left(\mathrm{V}_{\mathrm{TH}}-\mathrm{V}_{\mathrm{D}}\right) / \mathrm{R}_{\mathrm{EQ}} \\
& \mathrm{I}_{\mathrm{D}}=(7.67-0.7) / 2446=2.85 \mathrm{~mA}
\end{aligned}
$$

Alternative Solution Method

$\mathrm{V}_{\mathrm{R} 2}=\mathrm{V}_{\mathrm{D}}=0.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{R} 2}=\mathrm{V}_{\mathrm{R} 2} / \mathrm{R}_{2}=0.7 / 4700=0.15 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{R} 1}=\left(\mathrm{V}-\mathrm{V}_{\mathrm{R} 2}\right) / \mathrm{R}_{1}=(16.0-0.7) / 5100=3.0 \mathrm{~mA}$
$\mathrm{I}_{\text {Total }}=\mathrm{I}_{\mathrm{R} 1}$
$\mathrm{I}_{\mathrm{D}}=\mathrm{I}_{\text {Total }}-\mathrm{I}_{\mathrm{R} 2}=3.00-0.15=2.85 \mathrm{~mA}$

Exercise

Calculate the Current I_{D}
Answer: $\mathrm{I}_{\mathrm{D}}=4.9 \mathrm{~mA} \quad V_{\mathrm{D}}=0.7 \mathrm{~V}$

Zener Diodes

Note: Zener diodes operate in the reverse biased mode.
Example ($\mathrm{V}=12 \mathrm{~V}, \mathrm{R}=1000 \Omega, \mathrm{~V}_{\mathrm{Z}}=3.3 \mathrm{~V}$)
$\mathrm{V}=\mathrm{I}_{\mathrm{Z}} \mathrm{R}+\mathrm{V}_{\mathrm{Z}}$
$12=\mathrm{I}_{\mathrm{Z}} \times 1000+3.3$
$\mathrm{I}_{\mathrm{Z}}=(12.0-3.3) / 1000=8.7 \mathrm{~mA}$

If $V_{\text {Source }}>V_{Z}$ then V_{0} maintained at V_{Z}, else $V_{0}=0$
Example (Refer to the Diode Circuit Notes and Zener Diode Lecture Notes)
For $\mathrm{V}_{\mathrm{Z}}=5.1 \mathrm{~V}$, Calculate $\mathrm{I}_{\text {Total }}$ and $\mathrm{I}_{\mathrm{R} 2}$ and I_{Z}

1. Calculate V_{TH}

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{TH}}=20(3300 /(1100+3300) \\
& \mathrm{V}_{\mathrm{TH}}=15 \mathrm{~V}
\end{aligned}
$$

2. Calculate R_{EQ}

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{EQ}}=(1100 \times 3300) /(1100+3300) \\
& \mathrm{R}_{\mathrm{EQ}}=825 \Omega
\end{aligned}
$$

3. Calculate $\mathrm{I}_{\text {Total }}$ and $\mathrm{I}_{\mathrm{R} 2}$ and I_{Z}

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{TH}}=\mathrm{I}_{\mathrm{Total}} \mathrm{R}_{\mathrm{EQ}}+\mathrm{V}_{\mathrm{Z}} \\
& \mathrm{I}_{\mathrm{Z}}=\left(\mathrm{V}_{\mathrm{TH}}-\mathrm{V}_{\mathrm{Z}}\right) / \mathrm{R}_{\mathrm{EQ}} \\
& \mathrm{I}_{\mathrm{Z}}=(15-5.1) / 825=12 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{R} 2}=\mathrm{V}_{\mathrm{R} 2} / \mathrm{R}_{2}=\mathrm{V}_{\mathrm{D}} / \mathrm{R}_{2}=5.1 / 3300=1.55 \mathrm{~mA} \\
& \mathrm{I}_{\text {Total }}=\mathrm{I}_{\mathrm{Z}}+\mathrm{I}_{2}=12+1.6=13.55 \mathrm{~mA}
\end{aligned}
$$

Alternative Solution Method

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{R} 2}=\mathrm{V}_{\mathrm{Z}}=5.1 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{R} 2}=\mathrm{V}_{\mathrm{R} 2} / \mathrm{R}_{2}=5.1 / 3300=1.55 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{R} 1}=\left(\mathrm{V}-\mathrm{V}_{\mathrm{R} 2}\right) / \mathrm{R}_{1}=(20.0-5.1) / 1100=13.55 \mathrm{~mA} \\
& \mathrm{I}_{\text {Total }}=\mathrm{I}_{\mathrm{R} 1}=13.55 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{Z}}=\mathrm{I}_{\text {Total }}-\mathrm{I}_{\mathrm{R} 2}=13.55-1.55=12 \mathrm{~mA}
\end{aligned}
$$

Exercise

For $\mathrm{V}=21, \mathrm{R} 1=1000, \mathrm{R} 2=2000, \mathrm{~V}_{\mathrm{Z}}=7.5 \mathrm{~V}$
Calculate I_{Z} and $\mathrm{I}_{\mathrm{R} 2}$ and $\mathrm{I}_{\text {Total }}$
Answers:
$\mathrm{V}_{\mathrm{TH}}=14 \mathrm{~V}, \quad \mathrm{R}_{\mathrm{EQ}}=666 \Omega, \quad \mathrm{~V}_{0}=\mathrm{V}_{\mathrm{Z}}=7.5 \mathrm{~V}$ $\mathrm{I}_{\mathrm{Z}}=9.75 \mathrm{~mA}, \mathrm{I}_{\mathrm{R} 2}=3.75, \mathrm{I}_{\text {Total }}=13.5 \mathrm{~mA}$

Light Emitting Diode LED

PhotoResistor

Light-Sensitive Voltage Divider

$$
V_{\text {out }}=\frac{R_{2}}{R_{1}+R_{2}} V_{\text {in }}
$$

As the intensity of light increases, the resistance of the photoresistor decreases, so $V_{\text {out }}$ in the top circuit gets smaller as more light hits it, whereas $V_{\text {out }}$ in the lower circuit gets larger.

Scherz, Practical Electronics for Inventors, 2nd \& 3rd Editions
Page 1 of 5 .

PhotoDiode

PhotoTransistors

Source: Scherz, Practical Electronics for Inventors, 2nd \& 3rd Editions

Page 2 of 5 .

LED Current Limiting

LEDs in Series

$$
R_{S}=\frac{V_{I N}-\left(V_{D 1}+V_{D 2}+V_{D 3}\right)}{I_{D, \max }}
$$

LEDs in Parallel

Reference: Scherz, Practical Electronics for Inventors, 2nd \& 3rd Editions

AC-DC Polarity Indicator

Voltage-Level Indicator

LED lights
$\mathrm{R}_{\mathrm{S}}=\frac{\mathrm{V}_{\mathrm{In}}-\left[\mathrm{V}_{\mathrm{Z}}+\mathrm{V}_{\mathrm{LED}}\right]}{\mathrm{I}_{\mathrm{LED}}}$ when V_{2} is exceeded
$\mathrm{V}_{\mathrm{In}(\text { Minimum })}=\mathrm{R}_{\mathrm{S}} \mathrm{I}_{\mathrm{LED}}+\mathrm{V}_{\mathrm{Z}}+\mathrm{V}_{\mathrm{LED}}$

Driving LEDs from $120 V A C$

Reference: Scherz, Practical Electronics for Inventors, 2nd \& 3rd Editions

Voltage Dropper

 DC application

Voltage Regulator

Light-Sensitive Voltage Divider

$V_{\text {out }}=\frac{R_{2}}{R_{1}+R_{2}} V_{\text {in }}$
As the intensity of light increases, the resistance of the photoresistor decreases, so $V_{\text {out }}$ in the top circuit gets smaller as more light hits it, whereas $V_{\text {out }}$ in the lower circuit gets larger.

