Diode Characteristics

Source: James Brophy, Basic Electronics for Scientists, 5th Edition

Figure 6.18 Characteristics of a diode.

Figure 3-2 Current-voltage characteristics of germanium and silicon junction diodes.

Forward and Reverse Biasing of the PN Junction

Reference: Aminian and Kazimierczuk, Electronic Devices: A Design Approach, 2004

Figure 1-6 Conduction in semiconductor materials: (a) very little current flow in pure silicon; (b) electron flow in *n*-type material; (c) hole flow in *p*-type material.

Forward and Reverse Biasing of the PN Junction - continued

Figure 1-9: Blocks of *p*-type and *n*-type semiconductors before they are joined

Figure 1-10: Blocks of p-type and n-type semiconductors at the instant they are joined

Figure 1-11: The *p-n* junction after recombination of electron-hole pairs

Figure 1-12: Forward biasing the p-n junction with an external source

Figure 1-13: Reverse biasing the p-n junction with an external source

Diode Rectifiers, Clippers, and Clamps

Source: James Brophy, Basic Electronics for Scientists, 5th Edition

Figure 3-8 (a) Full-wave rectifier and (b) waveforms.

Figure 3-10 Voltage-doubler rectifier yields dc output voltage equal to twice peak input voltage.

Figure 3-23 Maximum amplitudes in output waveform of diode clipper are limited to values of bias voltage.

Figure 3-24 Diode clamp.

Figure 3-22 Diode clipper.

Figure 3-25 Negative peak of output waveform is clamped at zero when V = 0 in diode clamp circuit of Fig. 3-24.

Diode Circuits

Example

$$I_{\rm D} = 14.6 / (2000 + 1000)$$

 $I_{D} = 4.9 \text{ mA}$

 $V_0 = 0.7 + I_D R_2$

 $V_0 = 0.7 + 0.0049 \text{ x} 1000 = 0.7 + 4.9 = 5.6 \text{ V}$

Exercise

Calculate V_0 for V = 15 V, R1 = 2200 Ω , R2 = 3300 Ω

Answer: $I_D = 2.5 \text{ mA}$ $V_0 = 8.9 \text{ V}$

Calculate V_0

 $I_D = 3.38 \text{ mA}$

 $V_0 = 0.7 + I_D R_2 - 5.0$

 $V_0 = 0.7 + 0.00338 \text{ x } 3300 \text{ - } 5.0 = 0.7 + 11.2 \text{ - } 5.0 = 6.9 \text{ V}$

Exercise

Calculate V_0 for V1 = +10 V V2 = -5 V R1 = 1100 Ω R2 = 2200 Ω

Answer: $I_D = 4.1 \text{ mA}$ $V_0 = 4.8 \text{ V}$

 R_1

o Vo

 R_2

Example (Refer to the Diode Circuit Lecture Notes)

Calculate the Current I_D

1. Remove Diode (Replace by V_{TH})

For Voltage Divider $V_{TH} = V [R_2 / (R_1 + R_2)]$

$$V_{TH} = 16 [4700 / (5100 + 4700)] = 7.67 V$$

2. Short V_{source} (R_1 in parallel with R_2)

 $R_{EQ} = (R_1 \ x \ R_2) / (R_1 + R_2)$

 $R_{EQ} = \ (5100 \ x \ 4700) \ / \ (5100 + 4700) = 2446 \ \Omega$

3. Redraw with V_{TH} , R_{EQ} , Diode

$$V_{TH} = I_D R_{EQ} + V_D$$
 $I_D = (V_{TH} - V_D) / R_{EQ}$
 $I_D = (7.67 - 0.7) / 2446 = 2.85 \text{ mA}$

Alternative Solution Method

$$V_{R2} = V_D = 0.7 V$$

$$I_{R2} = V_{R2} / R_2 = 0.7 / 4700 = 0.15 mA$$

$$I_{R1} = (V - V_{R2}) / R_1 = (16.0 - 0.7) / 5100 = 3.0 mA$$

$$I_{Total} = I_{R1}$$

$$I_D = I_{Total} - I_{R2} = 3.00 - 0.15 = 2.85 mA$$

Exercise

Zener Diodes

Note: Zener diodes operate in the reverse biased mode.

Example (V = 12 V, R = 1000
$$\Omega$$
, V_Z = 3.3 V)
V = I_ZR + V_Z
12 = I_Z x 1000 + 3.3
I_Z = (12.0 - 3.3) / 1000 = 8.7 mA

If $V_{\text{Source}} > V_Z$ then V_0 maintained at V_Z , else $V_0 = 0$

Example (Refer to the Diode Circuit Notes and Zener Diode Lecture Notes)

For $V_Z = 5.1$ V, Calculate I_{Total} and I_{R2} and I_Z

1. Calculate V_{TH}

 $V_{TH} = 20 (3300 / (1100 + 3300))$ $V_{TH} = 15 V$

2. Calculate R_{EQ}

 $R_{EQ} = (1100 \text{ x } 3300) / (1100 + 3300)$ $R_{EQ} = 825 \Omega$

3. Calculate I_{Total} and I_{R2} and I_Z

 $V_{TH} = I_{Total}R_{EQ} + V_Z$

$$I_Z = (V_{TH} - V_Z) / R_{EQ}$$

 $I_Z = (15 - 5.1) / 825 = 12 \text{ mA}$

 $I_{R2} = V_{R2} / R_2 = V_D / R_2 = 5.1 / 3300 = 1.55 \text{ mA}$

 $I_{Total} = I_Z + I_2 = 12 + 1.6 = 13.55 \text{ mA}$

Alternative Solution Method

 $\begin{array}{l} V_{R2} = V_Z = 5.1 \ V \\ I_{R2} = V_{R2} \ / \ R_2 = 5.1 \ / \ 3300 = 1.55 \ mA \\ I_{R1} = (V - V_{R2}) \ / \ R_1 = (20.0 - 5.1) \ / \ 1100 = 13.55 \ mA \\ I_{Total} = I_{R1} = 13.55 \ mA \\ I_Z = I_{Total} - I_{R2} = 13.55 - 1.55 = 12 \ mA \end{array}$

Exercise

For V = 21, R1 = 1000, R2 = 2000, V_Z = 7.5 V Calculate I_Z and I_{R2} and I_{Total}

Answers:

Scanned Images: Electronic Devices, Ali Aminian & Marian Kazimierczuk, Pearson-Prentice Hall, 2004

Light Emitting Diode LED

PhotoResistor

Light-Sensitive Voltage Divider

$$V_{\rm out} = \frac{R_2}{R_1 + R_2} V_{\rm in}$$

As the intensity of light increases, the resistance of the photoresistor decreases, so $V_{\rm out}$ in the top circuit gets smaller as more light hits it, whereas $V_{\rm out}$ in the lower circuit gets larger.

Scherz, Practical Electronics for Inventors, 2nd & 3rd Editions

PhotoDiode

PhotoTransistors

Source: Scherz, Practical Electronics for Inventors, 2nd & 3rd Editions

LED Applications

LED Current Limiting

LEDs in Series

$$R_{S} = \frac{V_{IN} - (V_{D1} + V_{D2} + V_{D3})}{I_{D, \max}}$$

LEDs in Parallel

Reference: Scherz, Practical Electronics for Inventors, 2nd & 3rd Editions

AC-DC Polarity Indicator

Voltage-Level Indicator

$$R_{S} = \frac{V_{In} - \left[V_{Z} + V_{LED}\right]}{I_{LED}}$$

$$V_{\text{In(Minimum)}} = R_{\text{S}}I_{\text{LED}} + V_{\text{Z}} + V_{\text{LED}}$$

Driving LEDs from 120VAC

Reference: Scherz, Practical Electronics for Inventors, 2nd & 3rd Editions

Light-Sensitive Voltage Divider

$$V_{\rm out} = \frac{R_2}{R_1 + R_2} \, V_{\rm in}$$

As the intensity of light increases, the resistance of the photoresistor decreases, so $V_{\rm out}$ in the top circuit gets smaller as more light hits it, whereas $V_{\rm out}$ in the lower circuit gets larger.

