BME/ISE 3511 Bioelectronics - Test Seven Course Notes

Alternating Current

Capacitive & Inductive Reactance and Complex Impedance RC & RL Circuit Analyses (DC Transients, Time Constants, Steady State) RC & RL Passive Filters

Electrical Theory (Alternating Current)

Ohm's Law for AC $I_{RMS} = V_{RMS} / Z$ where Z is the Complex Impedance $|Z| = [(R^2 + (XL - XC)^2)]^{1/2}$ $\theta = \tan^{-1}[(XL - XC) / R]$ Power Factor $\cos \theta = R / Z$ Joule's Law Average Power = $\frac{1}{2} V_{peak} I_{peak} \cos \theta = V_{RMS} I_{RMS} \cos \theta$ Watts Purely Resistive Element ($\theta = 0$, $\cos \theta = 1$) Average Power = $\frac{1}{2} V_{peak} I_{peak} = V_{RMS} I_{RMS}$ (Watts)

ELI the ICE man	Component	Voltage / Current
	Resistor	In Phase
	Capacitor	Lags
	Inductor	Leads

Capacitive & Inductive Reactance and Complex Impedance

 $\omega = 2\pi f \qquad f = 0.159\omega$ Capacitive Reactance $X_C = 1 / \omega C = 1 / (2\pi f C) = 0.159 / f C$ Inductive Reactance $X_L = \omega L = 2\pi f L$ Complex Impedance R in series with series CL $Z = R + j(2\pi f L - 1/(2\pi f C))$ Impedance is a minimum at resonance R in series with parallel CL $Z = R + j(2\pi f L / (1 - (2\pi f)^2 LC))$ Impedance is a maximum at resonance

Time Constants

RC Circuit	Time Constant $= R C$
RL Circuit	Time Constant = L / R

Equations and Relationships

Inductive Reactance
$$X_L = 2\pi f L$$

Capacitive Reactance

$$X_C = \frac{1}{2\pi f C}$$

RC CircuitRL CircuitRCL CircuitCut-off Frequency
Resonant Frequency
$$f_0 = \frac{1}{2\pi RC}$$
 $f_0 = \frac{1}{2\pi L/R}$ $f_0 = \frac{1}{2\pi \sqrt{LC}}$ Time Constant $t = RC$ $t = L/R$ $t = \frac{R\sqrt{C/L}}{2}$

RCL Series Impedance

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

$$Z = \sqrt{R^2 + \left(\frac{X_L X_C}{X_L - X_C}\right)^2}$$

$$Z = \frac{R X_L X_C}{X_L X_C - R(X_L - X_C)}$$

RCL Parallel Impedance

Notes:

When $\omega = 0$, $X_C \to \infty$, i.e., **C** appears as an open circuit, so that $V_{out} = \frac{R_2}{R_1 + R_2}$

When $\omega >> 0$, $X_C = 0$, i.e., **C** appears as a short circuit, so that $V_{out} = 0$

FIGURE 8.1

FIGURE 8.2