BME/ISE 3511

Fall 2016

Ohm's Law V = I RVolts Joule's Law $P = VI = I^2R$ Watts Kirchoff's Law Sum of the Loop Voltages = 0Sum of the Node Currents = 0

Calculate Series & Parallel Equivalent Resistance

Sketch Series Resistors Voltage Divider (including voltage source) Calculate voltage across load resistor Voltage Divider (Resistors in Series with Voltage Source) $V_{1} = V (R_{1} / (R_{1} + R_{2}))$

Sketch Parallel Resistors Current Divider (including current source) Calculate current through load resistor Current Divider (Resistors in Parallel with Current Source) $I_1 = I(R_1 / (R_1 + R_2))$

Sketch Thevinen & Norton Equivalent Circuits

Describe how to calculate Equivalent Voltage, Current, Resistance from measurements

Thevenin's Theorem and Equivalent Circuit Series voltage source $\{V_{eq}\}$ and resistor equivalent $\{R_{eq}\}$ Any network of resistors and sources having two output terminals, may be replaced by a series combination of a voltage source V_{eq} and a resistance R_{eq} . The equivalent $emf V_{eq}$ is the potential at the output terminals when the output current is zero; i.e., the open-circuit voltage. The equivalent resistance R_{eq} is the ratio of the V_{eq} to the output current when R_{Load} is zero;

i.e., the short-circuit current.

Norton's Theorem and Equivalent Circuit Parallel Current source $\{I_{eq}\}$ and resistor equivalent $\{R_{eq}\}$ Any network of resistors and sources having two output terminals, may be replaced by a parallel combination of a current source I_{eq} and a resistance R_{eq} .

The current source I_{eq} is the short-circuit current in the output terminals,

and the resistance R_{eq} is the same as for Thevenin's Theorem.

Course Handouts:

Serial & Parallel Resistors Example Simple Voltage & Current Dividers Thevenin & Norton Equivalent Circuits http://hyperphysics.phy-astr.gsu.edu/hbase/electric/thevenin.html **Electrical Concepts**