Ohm's Law	$\mathrm{V}=\mathrm{I} R$	Volts
Joule's Law	$\mathrm{P}=\mathrm{V} \mathrm{I}=\mathrm{I}^{2} \mathrm{R}$	Watts

Kirchoff's Law
Sum of the Loop Voltages $=0$
Sum of the Node Currents $=0$

Calculate Series \& Parallel Equivalent Resistance

Sketch Series Resistors Voltage Divider (including voltage source)
Calculate voltage across load resistor
Voltage Divider (Resistors in Series with Voltage Source) $\quad \mathrm{V}_{2}=\mathrm{V}\left(\mathrm{R}_{2} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)\right.$
Sketch Parallel Resistors Current Divider (including current source)
Calculate current through load resistor
Current Divider (Resistors in Parallel with Current Source) $\quad I_{2}=I\left(R_{1} /\left(R_{1}+R_{2}\right)\right.$
Sketch Thevinen \& Norton Equivalent Circuits
Describe how to calculate Equivalent Voltage, Current, Resistance from measurements
Thevenin's Theorem and Equivalent Circuit Series voltage source $\left\{\mathrm{V}_{\mathrm{eq}}\right\}$ and resistor equivalent $\left\{\mathrm{R}_{\text {eq }}\right\}$
Any network of resistors and sources having two output terminals,
may be replaced by a series combination of a voltage source $V_{\text {eq }}$ and a resistance $R_{\text {eq }}$.
The equivalent emf V_{eq} is the potential at the output terminals when the output current is zero;
i.e., the open-circuit voltage.

The equivalent resistance $R_{\text {eq }}$ is the ratio of the $V_{e q}$ to the output current when $R_{\text {Load }}$ is zero;
i.e., the short-circuit current.

Norton's Theorem and Equivalent Circuit Parallel Current source $\left\{\mathrm{I}_{\mathrm{eq}}\right\}$ and resistor equivalent $\left\{\mathrm{R}_{\mathrm{eq}}\right\}$
Any network of resistors and sources having two output terminals,
may be replaced by a parallel combination of a current source $I_{\text {eq }}$ and a resistance $R_{\text {eq }}$.
The current source I_{eq} is the short-circuit current in the output terminals,
and the resistance R_{eq} is the same as for Thevenin's Theorem.

Course Handouts:

Serial \& Parallel Resistors Example
Simple Voltage \& Current Dividers
Thevenin \& Norton Equivalent Circuits
http://hyperphysics.phy-astr.gsu.edu/hbase/electric/thevenin.html
Electrical Concepts

