Concepts

Charge	Q = C V	Coulombs
Current	I = dQ/dt	Amperes
Ohm's Law	V = I R	Volts
Joule's Law	$P = V I = I^2 R$	Watts

Kirchhoff's Law

Sum of the Loop Voltages = 0 Sum of the Node Currents = 0

Engineering Notation

Decibel Calculations

P2 / P1 in dB = 10 log (P2 / P1) V2 / V1 in dB = 20 log (V2 / V1)0 dB implies P2 = P1

Half Power Point = -3dB (Same as RMS voltage 0.707 Vpeak)

Power expressed in $dBm = 10 \log (Power in milliwatts)$

Examples:

Use decibels to calculate the following:

- a. Given the ratio of two voltages $V_1 / V_1 = 25$; express the voltage ratio in dB. (+28 dB)
- b. Given the power ratio of $P_2 / P_1 = 50$; express the power ratio in dB. (+17 dB)
- c. Express 400 milliwatts in dBm. (+26 dBm)
- d. Express 400 microwatts (0.400 milliwatts) in dBm. (-4 dBm)
- e. For additional examples See Course Handouts

DMM Accuracy and Resolution

Electrical Concepts (PowerPoint)

Handy References: Schaum's Outline of Basic Electricity, 2ed

Table		Page
2-1	Base Units of the International Metric System	15
2-2	Supplementary SI Units	15
2-3	Derived SI Units	16
2-4	Metric Prefixes Used in Electricity	16
2-5	Powers of 10	17
2-6	Metric Prefixes Expressed as Powers of 10	19
2-7	Examples of Letter Symbols for Circuit Components	28