

•	Electi	rical The	eory
<u>Quantity</u>	<u>Symbol</u>	<u>Unit</u>	$Equation$ $Q = \int idt Q = CV$ $I = dQ/dt$ $V = dW/dQ$
Charge	Q	coulomb	
Current	I	ampere	
Voltage	V	volt	
Energy	W	joule	W = ∫VdQ = ∫ Pdt
Power	P	watt	P =dW/dt = IV

 $1 \text{ Bel} = \log(\text{Power}) / \text{Power}$

1 decibel = 1 dB = 0.1 Bel, hence 10 dB = 1 Bel

To express a Power Ratio in dB's, use $dB = 10 \log(Power_{1} / Power_{1})$

Let $Power_2 = 2 Power_1$ Power Ratio in dB's = 10 log(2 Power_1 / Power_1) = 10 log(2) = 3.01

Let $Power_2 = 0.5 Power1$ Power Ratio in dB's = 10 log(0.5 Power_1 / Power_1) = 10 log(0.5) = -3.01

-3 dB is often expressed as "3 dB Down" which is the half power point (Power₂ = 1/2 Power₁)

Let $Power_2 = Power_1$ Power Ratio in dB's = 10 log(Power_1 / Power_1) = 10 log(1) = 0

dB = 0 does not imply zero power but rather a power ratio of one-to-one dB = 0 can be used as a zero reference; that is to say, set your reference level to a particular value and then use the dB scale to refer all other values to that reference level.

```
Examples: Reference Level = 400 watts.

200 watts = -3 dB

800 watts = +3 dB

400 watts = 0 dB

4000 watts = +10 dB

40 watts = -10 dB

650 watts = +2.1 dB

65 watts = -7.9 dB

100 watts = -6 dB

2,500,000 watts = +64 dB
```

Note: A reference of 1 milliwatts is used for dBm's 1 milliwatts = $10 \log(1 / 1) = 0 dBm$ 5 milliwatts = $10 \log(5 / 1) = +7 dBm$ 500 milliwatts = +27 dBm0.001 milliwatts = -30 dBm

For Voltage, Power = $IE = (E/R)E = E^2/R$

To express a Voltage Ratio in dB's, use dB = $10 \log(\text{Power}_2 / \text{Power}_1) = 10 \log[(\text{E}_2^2/\text{R}) / \text{E}_1^2/\text{R})] = 10 \log[(\text{E}_2^2/\text{R}) / \text{E}_1^2/\text{R})] = 10 \log(\text{E}_2^2 / \text{E}_1^2) = 20 \log(\text{E}_2^2 / \text{E}_1)$

Let Power Ratio $dB = -3$,	then	$20 \log(E_2 / E_1) = -3$
		$\log (E_2 / E_1) = -0.15$
		$E_{2} / E_{1} = 0.707 = 0.5 \text{ SQRT}(2)$

DMM Resolution and Accuracy

Resolution (3½ Digits or 1999) 3 Full Digits (Left-Hand Digit Max Value = 1) Maximum Reading 1999

Resistor Measurement Accuracy \pm (2.5% Reading + 5 Units Last Digit)

Always use lowest range that provides maximum digits

Resistor Measurement Accuracy Example #1

Nominal 4700 Ohm Resistor Reading on the 20K Ω Range = 4.58 = 4580 ohms 2.5% x 4580 = 115

Last digit represents 50 ohms

Accuracy = $\pm (115 + 50) = \pm 165 \quad (165 / 4580 = 3.60\%)$

Resistor Value: $4580 \pm 165 = 4415$ to 4745

Note: 5% of Nominal Value = $0.05 \times 4700 = 235$ (4465 to 4935)

Resistor Measurement Accuracy Example #2

Nominal 1.5M Ohm Resistor

Reading on the 2000K Ω Range = 1462 = 1, 462,000 ohms

 $2.5\% \times 1,462,000 = 36,550$

Last digit represents 5000 ohms

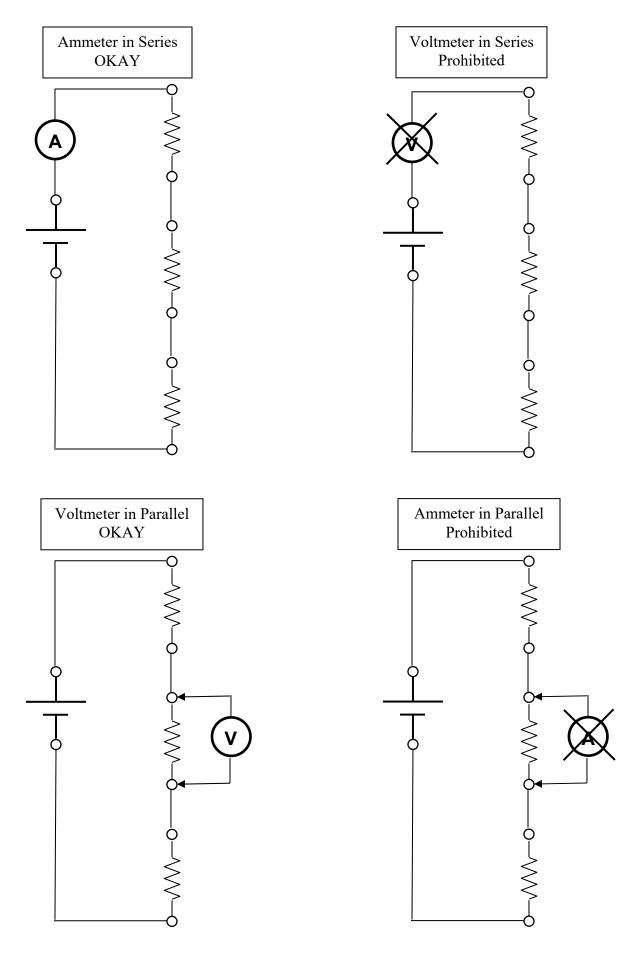
Accuracy = $\pm (36,550 + 5,000) = \pm 41,550 + 41,550 + 1,462,000 = 2.84\%$

Resistor Value: $1,462,000 \pm 41,550 = 1,420,450$ to 1,503,550

Note: 5% of Nominal Value = $0.05 \times 1,500,000 = 75,000 (1,425,000 to 1,575,000)$

DMM Resolution and Accuracy

Resolution (3½ Digits or 1999) 3 Full Digits (Left-Hand Digit Max Value = 1) Maximum Reading 1999


Resistor Measurement Accuracy ± (2.5% Reading + 5 Units Last Digit)

What does 5 Units Last Digit really mean?

DMM Res	sistance	Scale		Max Reade	out	Mental	Conversion
2K =	2000	Ohms		1.999		2000	
	abcx			a bcx		abcx	
where							
a = 10	00						
b = 1	00						
с =	10						
x =	1 5	units	of las	st digit	= 5 x	1 = 5	ohms

DMM Resistance Scale 20K = 20000 Ohms abcx	Max Readout 1.999 a bcx	Mental Conversion 20000 abcx
	a DCX	abex
where		
a = 10000		
b = 1000		
c = 100		
x = 10 5 units of 1a	ast digit = 5 x	10 = 50 ohms
DMM Resistance Scale	Max Readout	Mental Conversion
2M = 2,000,000 Ohms	1.999	2,000,000
2M = 2,000,000 Ohms a bcx		
2M = 2,000,000 Ohms a bcx where	1.999	2,000,000
2M = 2,000,000 Ohms a bcx where a = 1,000,000	1.999	2,000,000
2M = 2,000,000 Ohms a bcx where a = 1,000,000 b = 100,000	1.999	2,000,000
2M = 2,000,000 Ohms a bcx where a = 1,000,000	1.999	2,000,000

DMM Connections

