Additional Review Problems

1. Use a Truth Table to show **A XOR B** is equivalent to **A EQV B**

2. Use a Truth Table to show $\overline{\mathbf{A} \mathbf{E} \mathbf{Q} \mathbf{V} \mathbf{B}}$ is equivalent to $(\overline{\mathbf{A}} \mathbf{A} \mathbf{N} \mathbf{D} \mathbf{B}) \mathbf{OR} (\mathbf{A} \mathbf{A} \mathbf{N} \mathbf{D} \overline{\mathbf{B}})$

3. Sketch a simplified logic circuit using only NAND gates that implement the OR function. Hint: Consider De Morgan's Law.

4. Select the statements that are universally true for the stated conditions.

		For All A	Only if A is True	Only if A is False	Never
4a	$\mathbf{A} + \mathbf{A} = 1$				
4b	$\mathbf{A} \bullet \mathbf{A} = 0$				
4c	A + 0 = 0				
4d	$\mathbf{A} + 1 = \mathbf{A}$				
4e	$\mathbf{A} + (\mathbf{A} \bullet \mathbf{B}) = \mathbf{A}$				
4f	$\mathbf{A} \bullet (\mathbf{A} + \mathbf{B}) = \mathbf{A}$				
4g	$A \bullet (A + \overline{A}) = A$				
4h	$\mathbf{A} \bullet (\mathbf{A} + \overline{\mathbf{A}}) = 0$				
4i	$\mathbf{A} \bullet (\mathbf{A} + \overline{\mathbf{A}}) = 1$				
4j	$\overline{\mathbf{A}} + (\mathbf{A} \bullet \mathbf{A}) = 0$				
4k	$A + \overline{A} = 0$				
41	$A \bullet \overline{A} = 0$				
4m	$A + \overline{A} = 1$				
4n	$A + \overline{A} = A$				
40	$A + \overline{A} = \overline{A}$				
4p	$A \bullet \overline{A} = A$				

Additional Review Problems - continued

5. Determine the value (True or False of the expression, given the values of P & Q.

	Expression	Р	Q	Answer
5a	P AND Q	True	False	
5b	P AND \overline{Q}	True	False	
5c	\overline{P} AND \overline{Q}	False	True	
5d	P AND Q	False	True	
5e	P AND Q	False	False	
5f	P AND \overline{Q}	True	True	
5g	\overline{P} AND \overline{Q}	True	False	
5h	P OR Q	False	False	
5i	P OR Q	True	False	
5j	P OR \overline{Q}	True	False	
5k	\overline{P} OR \overline{Q}	False	True	
51	P OR Q	False	True	
5m	P OR Q	False	False	
5n	$P \text{ OR } \overline{Q}$	True	True	
50	\overline{P} OR \overline{Q}	True	False	
5р	P OR Q	False	False	

Incubator of Possible Test Eight Bonus Questions

In class, we stated that ALL algebras exhibit the Distributive Property of Multiplication across Addition. For example: X(Y + Z) = XY + XZ

It is trivial to show that the Distributive Property of Addition across Multiplication does NOT apply to the integers. That is to say, in general: $X + (Y Z) \neq (X + Y) (X + Z)$ Let X = 2, Y = 3, Z = 4; $2 + (3 x 4) \neq (2 + 3) x (2 + 4)$ $2 + 7 \neq (5) x (6)$ $9 \neq 30$

But what about Boolean Algebra?

Use Truth Tables to prove the Distributive Property of AND across OR $A \bullet (B + C) = (A \bullet B) + (A \bullet C)$

Use Truth Tables to determine whether or not the Distributive Property of OR across AND applies to Boolean Algebra. That is to ask, does

$$\stackrel{?}{A + (B \bullet C) = (A + B) \bullet (A + C) \text{ for all } A, B, C.$$

Does the diagram below resemble any of the Boolean Algebra Properties that we discussed in class?

If not, use a Truth Table to reveal a simplified equivalent circuit.

Similarly, what about this circuit?

