1. Use a Truth Table to show $\overline{\mathbf{A X O R B}}$ is equivalent to A EQV B
2. Use a Truth Table to show $\overline{\mathbf{A} \text { EQV B }}$ is equivalent to ($\overline{\mathbf{A}}$ AND B) OR (A AND $\overline{\mathbf{B}}$)
3. Sketch a simplified logic circuit using only NAND gates that implement the OR function. Hint: Consider De Morgan's Law.
4. Select the statements that are universally true for the stated conditions.

		For All A	Only if A is True	Only if A is False	Never
4 a	$\mathrm{A}+\mathrm{A}=1$				
4 b	$\mathrm{~A} \bullet \mathrm{~A}=0$				
4 c	$\mathrm{A}+0=0$				
4 d	$\mathrm{~A}+1=\mathrm{A}$				
4 e	$\mathrm{A}+(\mathrm{A} \bullet \mathrm{B})=\mathrm{A}$				
4 f	$\mathrm{A} \bullet(\mathrm{A}+\mathrm{B})=\mathrm{A}$				
4 g	$\mathrm{~A} \bullet(\mathrm{~A}+\overline{\mathrm{A}})=\mathrm{A}$				
4 h	$\mathrm{~A} \bullet(\mathrm{~A}+\overline{\mathrm{A}})=0$				
4 i	$\mathrm{A} \bullet(\mathrm{A}+\overline{\mathrm{A}})=1$				
4 j	$\overline{\mathrm{A}}+(\mathrm{A} \bullet \mathrm{A})=0$				
4 k	$\mathrm{A}+\overline{\mathrm{A}}=0$				
4 l	$\mathrm{A}-\overline{\mathrm{A}}=0$				
4 m	$\mathrm{~A}+\overline{\mathrm{A}}=1$				
4 n	$\mathrm{A}+\overline{\mathrm{A}}=\mathrm{A}$				
4 p	$\mathrm{A}+\overline{\mathrm{A}}=\overline{\mathrm{A}}$				

Additional Review Problems - continued
5. Determine the value (True or False of the expression, given the values of $\mathrm{P} \& \mathrm{Q}$.

	Expression	P	Q	Answer
5a	P AND Q	True	False	
5b	P AND $\overline{\mathrm{Q}}$	True	False	
5c	$\overline{\mathrm{P}} \text { AND } \overline{\mathrm{Q}}$	False	True	
5d	$\overline{\mathrm{P}}$ AND Q	False	True	
5e	P AND Q	False	False	
5f	P AND $\overline{\mathrm{Q}}$	True	True	
5 g	$\overline{\mathrm{P}} \text { AND } \overline{\mathrm{Q}}$	True	False	
5h	$\overline{\mathrm{P}}$ OR Q	False	False	
5 i	P OR Q	True	False	
5j	P OR $\overline{\mathrm{Q}}$	True	False	
5k	$\overline{\mathrm{P}}$ OR $\overline{\mathrm{Q}}$	False	True	
51	$\overline{\mathrm{P}}$ OR Q	False	True	
5 m	P OR Q	False	False	
5n	P OR $\overline{\mathrm{Q}}$	True	True	
50	$\overline{\mathrm{P}} \text { OR } \overline{\mathrm{Q}}$	True	False	
5p	$\overline{\mathrm{P}} \mathrm{OR} \mathrm{Q}$	False	False	

Incubator of Possible Test Eight Bonus Questions

In class, we stated that ALL algebras exhibit the Distributive Property of Multiplication across Addition. For example: $\mathrm{X}(\mathrm{Y}+\mathrm{Z})=\mathrm{XY}+\mathrm{XZ}$

It is trivial to show that the Distributive Property of Addition across Multiplication does NOT apply to the integers. That is to say, in general: $\mathrm{X}+(\mathrm{Y} \mathrm{Z}) \neq(\mathrm{X}+\mathrm{Y})(\mathrm{X}+\mathrm{Z})$
Let $\mathrm{X}=2, \mathrm{Y}=3, \mathrm{Z}=4$;
$2+(3 \times 4) \neq(2+3) \times(2+4)$
$2+7 \neq(5) \times(6)$
$9 \neq 30$
But what about Boolean Algebra?
Use Truth Tables to prove the Distributive Property of AND across OR
$\mathrm{A} \bullet(\mathrm{B}+\mathrm{C})=(\mathrm{A} \bullet \mathrm{B})+(\mathrm{A} \bullet \mathrm{C})$
Use Truth Tables to determine whether or not the Distributive Property of OR across AND applies to Boolean Algebra. That is to ask, does

$$
A+(B \bullet C)=(A+B) \bullet(A+C) \text { for all } A, B, C
$$

Does the diagram below resemble any of the Boolean Algebra Properties that we discussed in class?
If not, use a Truth Table to reveal a simplified equivalent circuit.

Similarly, what about this circuit?

