Answers (Truth Tables) to Logic Diagram Review Problems

Figure B.

	$\# \mathbf{1}$	$\# \mathbf{2}$
$\mathbf{P} \mathbf{Q}$	$\mathbf{P \cdot \mathbf { Q }}$	$\mathbf{Q}+\overline{\mathbf{Q}}$
00	0	1
01	0	1
10	0	1
11	1	1

\#3
$(\# 1) \bullet(\# 2)$
0
0
0
1
Answer: P•Q

Figure C.

	$\# \mathbf{1}$	$\# \mathbf{2}$	$\# \mathbf{3}$	$\# 4$
$\mathbf{P} \mathbf{Q}$	$\mathbf{P} \cdot \mathbf{Q}$	$\# \mathbf{1 + \mathbf { Q }}$	$\# \mathbf{2 +} \overline{\mathbf{Q}}$	$\overline{(\# 2) \cdot(\# 3)}$
0	1	0	1	1
0	1	0	0	1
10	1	0	1	1
1	0	0	0	1

Figure D.

	\#1	\#2	\#3
P Q	$\mathbf{P}+\mathbf{Q}$	$\overline{\mathrm{P}} \cdot \mathrm{Q}$	\#1•\#2
00	0	0	0
01	1	1	1
10	1	0	0
11	1	0	0

Answer: 1

Figure B.

\#1 P•Q
\#2 $\quad \mathrm{Q}+\overline{\mathrm{Q}}=1$
\#3 $(\mathrm{P} \cdot \mathrm{Q}) \cdot(1)=\mathrm{P} \cdot \mathrm{Q}$
Answer: P•Q

Figure C.

\#1 $\overline{\mathrm{P} \cdot \mathrm{Q}}$
\#2 $\overline{\bar{P} \cdot \mathrm{Q}}+\mathrm{Q}=(\mathrm{P} \cdot \mathrm{Q}) \cdot \overline{\mathrm{Q}}=\mathrm{P} \cdot \mathrm{Q} \cdot \overline{\mathrm{Q}}=\mathrm{P} \cdot 0=0$
\#3 $0+\overline{\mathrm{Q}}=\overline{\mathrm{Q}}$
\#4 $\overline{0 \cdot \bar{Q}}=1+\mathrm{Q}=1$
Answer: 1

Figure D.

> \#1 P + Q
> \#2 $\overline{\mathrm{P}} \cdot \mathrm{Q}$
> *** \#3 $(\mathrm{P}+\mathrm{Q}) \cdot(\overline{\mathrm{P}} \cdot \mathrm{Q})=(\overline{\mathrm{P}} \cdot \mathrm{Q}) \cdot(\mathrm{P}+\mathrm{Q})=(\overline{\mathrm{P}} \cdot \mathrm{Q}) \cdot \mathrm{P}+(\overline{\mathrm{P}} \cdot \mathrm{Q}) \cdot \mathrm{Q}=\overline{\mathrm{P}} \cdot \mathrm{P} \cdot \mathrm{Q}+\overline{\mathrm{P}} \cdot \mathrm{Q} \cdot \mathrm{Q}=0 \cdot \mathrm{Q}+\overline{\mathrm{P}} \cdot \mathrm{Q}=0+\overline{\mathrm{P}} \cdot \mathrm{Q}=\overline{\mathrm{P}} \cdot \mathrm{Q}$
> *** From Boolean Algebra Properties: $\mathrm{A}(\mathrm{B}+\mathrm{C})=\mathrm{AB}+\mathrm{AC}$
> $\mathrm{A}(\mathrm{B}+\mathrm{C})=\mathrm{AB}+\mathrm{AC}$ where $\mathrm{A}=\overline{\mathrm{P}} \cdot \mathrm{Q} \quad \mathrm{B}=\mathrm{P} \quad \mathrm{C}=\mathrm{Q}$
> $(\overline{\mathrm{P}} \cdot \mathrm{Q}) \cdot(\mathrm{P}+\mathrm{Q})=(\overline{\mathrm{P}} \cdot \mathrm{Q}) \cdot \mathrm{P}+(\overline{\mathrm{P}} \cdot \mathrm{Q}) \cdot \mathrm{Q}=\overline{\mathrm{P}} \cdot \mathrm{P} \cdot \mathrm{Q}+\overline{\mathrm{P}} \cdot \mathrm{Q} \cdot \mathrm{Q}=0 \cdot \mathrm{Q}+\overline{\mathrm{P}} \cdot \mathrm{Q}=0+\overline{\mathrm{P}} \cdot \mathrm{Q}=\overline{\mathrm{P}} \cdot \mathrm{Q}$

