BME 3511 Laboratory 3 Resistors in Series
Student Name: \qquad Date Submitted: \qquad
Lab Partner(s): \qquad
Lab Procedure: Set up the follow circuits in series. Measure the resistances individually as well as the total resistance. Assume voltage source of 5 Volts. Calculate equivalent resistance, current, and voltage across each resistor. Measure and record the voltages as indicated.

Resistors	Measured Resistance	Calculated Current	Calculated Voltage	Measured Voltage
$\begin{aligned} & \mathrm{R} 1=1.2 \mathrm{k} \Omega \\ & \mathrm{R} 2=1.2 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \mathrm{R} 1= \\ & \mathrm{R} 2= \\ & \mathrm{RTotal}= \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{R} 1}= \\ & \mathrm{I}_{\mathrm{R} 2}= \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{R} 1}= \\ & \mathrm{V}_{\mathrm{R} 2}= \\ & \mathrm{Total}= \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{R} 1}= \\ & \mathrm{V}_{\mathrm{R} 2}= \\ & \text { Total }= \end{aligned}$
$\begin{aligned} & \mathrm{R} 1=1.2 \mathrm{k} \Omega \\ & \mathrm{R} 2=560 \Omega \end{aligned}$	$\begin{aligned} & \mathrm{R} 1= \\ & \mathrm{R} 2= \\ & \mathrm{RTotal}= \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{R} 1}= \\ & \mathrm{I}_{\mathrm{R} 2}= \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{R} 1}= \\ & \mathrm{V}_{\mathrm{R} 2}= \\ & \mathrm{Total}= \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{R} 1}= \\ & \mathrm{V}_{\mathrm{R} 2}= \\ & \text { Total }= \end{aligned}$
$\begin{aligned} & \mathrm{R} 1=680 \Omega \\ & \mathrm{R} 2=360 \Omega \\ & \mathrm{R} 3=1.2 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \mathrm{R} 1= \\ & \mathrm{R} 2= \\ & \mathrm{R} 3= \\ & \mathrm{RTotal}= \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{R} 1}= \\ & \mathrm{I}_{\mathrm{R} 2}= \\ & \mathrm{I}_{\mathrm{R} 3}= \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{R} 1}= \\ & \mathrm{V}_{\mathrm{R} 2}= \\ & \mathrm{V}_{\mathrm{R} 3}= \\ & \text { Total }= \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{R} 1}= \\ & \mathrm{V}_{\mathrm{R} 2}= \\ & \mathrm{V}_{\mathrm{R} 3}= \\ & \text { Total }= \end{aligned}$
$\begin{aligned} & \mathrm{R} 1=220 \Omega \\ & \mathrm{R} 2=470 \Omega \\ & \mathrm{R} 3=1.2 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \mathrm{R} 1= \\ & \mathrm{R} 2= \\ & \mathrm{R} 3= \\ & \mathrm{RTotal}= \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{R} 1}= \\ & \mathrm{I}_{\mathrm{R} 2}= \\ & \mathrm{I}_{\mathrm{R} 3}= \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{R} 1}= \\ & \mathrm{V}_{\mathrm{R} 2}= \\ & \mathrm{V}_{\mathrm{R} 3}= \\ & \text { Total }= \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{R} 1}= \\ & \mathrm{V}_{\mathrm{R} 2}= \\ & \mathrm{V}_{\mathrm{R} 3}= \\ & \text { Total }= \end{aligned}$
$\begin{aligned} & \mathrm{R} 1=680 \Omega \\ & \mathrm{R} 2=15 \mathrm{k} \Omega \\ & \mathrm{R} 3=560 \Omega \end{aligned}$	$\begin{aligned} & \mathrm{R} 1= \\ & \mathrm{R} 2= \\ & \mathrm{R} 3= \\ & \mathrm{RTotal}= \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{R} 1}= \\ & \mathrm{I}_{\mathrm{R} 2}= \\ & \mathrm{I}_{\mathrm{R} 3}= \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{R} 1}= \\ & \mathrm{V}_{\mathrm{R} 2}= \\ & \mathrm{V}_{\mathrm{R} 3}= \\ & \text { Total }= \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{R} 1}= \\ & \mathrm{V}_{\mathrm{R} 2}= \\ & \mathrm{V}_{\mathrm{R} 3}= \\ & \text { Total }= \end{aligned}$

