Understanding the Behavior of Complex Impedances

Understanding the Behavior of Complex Impedances at very low frequency (i.e., $\mathrm{f} \approx 0$) and at very high frequency (i.e., $\mathrm{f} \gg 0$ or $\mathrm{f} \approx \infty$).

For Inductive Reactance, $\mathrm{X}_{\mathrm{L}}=\omega \mathrm{L}$
If $\omega=0$, then $X_{L}=\omega L=0$
If $\omega \gg 0$, then $X_{L}=\omega L \gg 0 \approx \infty$
For Capacitive Reactance, $\mathrm{X}_{\mathrm{C}}=1 / \omega \mathrm{C}$
If $\omega=0$, then $X_{C}=1 / \omega \mathrm{C} \gg 0 \approx \infty$
If $\omega \gg 0$, then $\mathrm{X}_{\mathrm{C}}=1 / \omega \mathrm{C} \approx 0$
$\mathrm{R}=\mathrm{R}$ regardless of ω.
From Ohm's Law for Alternating Current, Impedance $Z=v(t) / i(t)$
$\mathrm{Z}=\mathrm{R}+\mathrm{j}(\mathrm{X})$ where X is the reactant component due to circuit capacitors and inductors at a given frequency.
IF $Z=0$, then Short, i.e., like a wire conductor, very high current ($I=V / Z$).
If $Z \gg 0(Z \approx \infty)$, then Open, i.e., like a open switch, no current.
A Short in parallel with any other number of elements appears as a Short overall; i.e., just a wire conductor.

An Open in parallel with another element can be considered to be no existent, i.e., no effect.

A Short in series with another element can be considered to be just a wire conductor.

An Open in series with another number of elements appears as an Open Switch.

If $\omega=0$, then $X_{L}=\omega L=0$ and $X_{C}=1 / \omega C \gg 0$.
If $\omega \gg 0$, then $X_{L}=\omega L \gg 0$ and $X_{C}=1 / \omega C=0$.
$\mathrm{R}=\mathrm{R}$ regardless of ω.
IF $Z=0$, then Short, i.e., like a wire conductor, very high current ($I=V / R$).
If $Z \gg 0(Z \approx \infty)$, then Open, i.e., like a open switch, no current.
For series: $\mathrm{Z}+0=\mathrm{Z}$ and $\mathrm{Z}+\infty=\infty$ (Open)
For parallel, $Z \| 0=\frac{Z(0)}{Z+0}=0$ (Short) and $\quad Z \| \infty=\frac{Z(\infty)}{Z+\infty}=\frac{Z(\infty)}{\infty}=Z$

From Complex Impedance Quiz \& BME/ISE 3511Fall 2015 Test Four

A.

$$
R+\frac{X_{C} X_{L}}{X_{C}+X_{L}}
$$

if $\boldsymbol{\omega}=\mathbf{0}$, then $R+\frac{X_{C} X_{L}}{X_{C}+X_{L}} \quad \approx \mathrm{R}+0=\mathrm{R}\left(\right.$ Note: $\left.\mathrm{X}_{\mathrm{L}}=0\right) \quad$ Overall Effect $=$ Resistive
if $\boldsymbol{\omega} \gg \mathbf{0}$, then $R+\frac{X_{C} X_{L}}{X_{C}+X_{L}} \approx \mathrm{R}+0=\mathrm{R} \quad\left(\right.$ Note: $\left.\mathrm{X}_{\mathrm{C}}=0\right) \quad$ Overall Effect $=$ Resistive

if $\boldsymbol{\omega}=\mathbf{0}$, then $X_{L}+\frac{R X_{C}}{R+X_{C}} \approx 0+\frac{R X_{C}}{R+X_{C}} \approx 0+\frac{R X_{C}}{X_{C}}=0+\mathrm{R}=\mathrm{R}\left(\right.$ Note: $\mathrm{X}_{\mathrm{L}}=0$ and $\left.\mathrm{X}_{\mathrm{C}} \gg 0\right)$

Overall Effect $=$ Resistive

if $\omega \gg \mathbf{0}$, then $X_{L}+\frac{R X_{C}}{R+X_{C}}=\infty+0=\infty$ Open (Note: $\mathrm{X}_{\mathrm{L}}=\infty$ and $\mathrm{X}_{\mathrm{C}}=0$)
Overall Effect $=$ Open
C.

$$
X_{C}+\frac{R X_{L}}{R+X_{L}}
$$

if $\boldsymbol{\omega}=\mathbf{0}$, then $X_{C}+\frac{R X_{L}}{R+X_{L}} \quad \approx \infty+\frac{R(0)}{R+0} \approx \infty+0=\infty$ Open (Note: $\mathrm{X}_{\mathrm{C}} \gg 0$ and $\mathrm{X}_{\mathrm{L}}=0$)
Overall Effect $=\mathbf{O p e n}$
if $\boldsymbol{\omega} \gg \mathbf{0}$, then $X_{C}+\frac{R X_{L}}{R+X_{L}} \approx 0+\frac{R X_{L}}{R+X_{L}} \approx 0+\frac{R X_{L}}{X_{L}}=0+\mathrm{R}=\mathrm{R}\left(\right.$ Note: $\mathrm{X}_{\mathrm{C}}=0$ and $\mathrm{X}_{\mathrm{L}} \gg 0$)
Overall Effect $=$ Resistive

