Understanding the Behavior of Complex Impedances

Understanding the Behavior of Complex Impedances at very low frequency (i.e., $f \approx 0$) and at very high frequency (i.e., f >> 0 or $f \approx \infty$).

For Inductive Reactance, $X_L = \omega L$ If $\omega = 0$, then $X_L = \omega L = 0$ If $\omega >> 0$, then $X_L = \omega L >> 0 \approx \infty$

For Capacitive Reactance, $X_C = 1 / \omega C$ If $\omega = 0$, then $X_C = 1 / \omega C >> 0 \approx \infty$ If $\omega >> 0$, then $X_C = 1 / \omega C \approx 0$

R = R regardless of ω .

From Ohm's Law for Alternating Current, Impedance Z = v(t) / i(t)Z = R + j(X) where X is the reactant component due to circuit capacitors and inductors at a given frequency.

IF Z = 0, then **Short**, i.e., like a wire conductor, very high current (I = V/Z). If Z >> 0 ($Z \approx \infty$), then **Open**, i.e., like a open switch, no current.

A Short in parallel with any other number of elements appears as a Short overall; i.e., just a wire conductor.

An **Open** in parallel with another element can be considered to be no existent, i.e., no effect.

A Short in series with another element can be considered to be just a wire conductor.

An **Open** in series with another number of elements appears as an Open Switch.

Understanding the Behavior of Complex Impedances - continued

If $\omega = 0$, then $X_L = \omega L = 0$ and $X_C = 1 / \omega C >> 0$. If $\omega >> 0$, then $X_L = \omega L >> 0$ and $X_C = 1/\omega C = 0$. R = R regardless of ω . IF Z = 0, then Short, i.e., like a wire conductor, very high current (I = V/R). If Z >> 0 ($Z \approx \infty$), then Open, i.e., like a open switch, no current.

For series: Z + 0 = Z and $Z + \infty = \infty$ (Open) For parallel, $Z \parallel 0 = \frac{Z(0)}{Z+0} = 0$ (Short) and $Z \parallel \infty = \frac{Z(\infty)}{Z+\infty} = \frac{Z(\infty)}{\infty} = Z$

From Complex Impedance Quiz & BME/ISE 3511Fall 2015 Test Four

if $\boldsymbol{\omega} = \mathbf{0}$, then $R + \frac{X_C X_L}{X_C + X_L} \approx R + 0 = R$ (Note: $X_L = 0$) Overall Effect = Resistive

if $\omega >> 0$, then $R + \frac{X_C X_L}{X_C + X_L} \approx R + 0 = R$ (Note: $X_C = 0$) Overall Effect = Resistive

$$\mathbf{B}. \qquad \mathbf{A}_{L} + \frac{RX_{C}}{R + X_{C}}$$

if $\boldsymbol{\omega} = \boldsymbol{0}$, then $X_L + \frac{RX_C}{R + X_C} \approx 0 + \frac{RX_C}{R + X_C} \approx 0 + \frac{RX_C}{X_C} = 0 + R = R$ (Note: $X_L = 0$ and $X_C >> 0$) **Overall Effect = Resistive**

if $\omega >> 0$, then $X_L + \frac{RX_C}{R + X_C} = \infty + 0 = \infty$ Open (Note: $X_L = \infty$ and $X_C = 0$)

Overall Effect = Open

C.
$$X_{C} + \frac{RX_{L}}{R + X_{L}}$$

if $\boldsymbol{\omega} = \mathbf{0}$, then $X_C + \frac{KX_L}{R + X_L} \approx \infty + \frac{K(\mathbf{0})}{R + \mathbf{0}} \approx \infty + \mathbf{0} = \infty$ Open (Note: $X_C >> 0$ and $X_L = \mathbf{0}$)

Overall Effect = Open

if
$$\boldsymbol{\omega} \gg \mathbf{0}$$
, then $X_C + \frac{RX_L}{R + X_L} \approx 0 + \frac{RX_L}{R + X_L} \approx 0 + \frac{RX_L}{X_L} = 0 + R = R$ (Note: $X_C = 0$ and $X_L \gg 0$)
Overall Effect = Desistive

Overall Effect = Resistive