Syllabus for EE-761

Random Processes

Course Website: http://www.cs.wright.edu/~ashaw/ee761

Fall Quarter, 2006

INSTRUCTOR : DR. ARNAB K. SHAW
Office No. : 427 RUSS
PHONE No.: 775-5064 (or 5037) FAX No.: 775-3936
EMAIL : ashaw@wright.edu
OFFICE HRS.: 11AM - 12 NOON (TUE/THU) and by appointment

Prerequisite : Background in Fourier Transform

Suggested References

1. Probability, Random Variables and Stochastic Processes by Athanasios Papoulis and S. Unnikrishna Pillai

Math Requirement : EE-761 satisfies the 1 course Math-requirement for completing MS in EE.

Course Objectives :

Most signals that electrical/computer engineers deal with are also random in nature, as for example, in Wireless Communication, radar, sonar, control systems, signals in electrical circuits and VLSI chips, computer and telephone networks, TV and radio channels and others. Noise and other interfering signals are the primary causes of such randomness. Hence, the primary job of many electrical engineers is to detect and/or estimate the useful parts of signals from noisy observations.

In this course, the fundamentals of Probability Theory, Random Variables and Random Processes will be covered. The fundamentals learnt in this course, will be useful in a large number of follow-up courses in Communication and Signal Processing offered by the Electrical Engineering Department.

Follow-up Courses :

- EE-735 : Wireless Communication
- EE-736 : Advanced Wireless Communication
- EE-762 : Detection and Estimation theory
- EE-763 : Modern Spectral Estimation
- EE-718 : Multi-Target Tracking
- EE-716 : Kalman Filters
- EE-740 : Information Theory and Coding
Course Outline

<table>
<thead>
<tr>
<th>Topic</th>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axioms of Probability, Set Theory and Probability Spaces</td>
<td>2</td>
</tr>
<tr>
<td>Introduction to Random Variables</td>
<td>2</td>
</tr>
<tr>
<td>Probability Distribution and Density Functions</td>
<td>2</td>
</tr>
<tr>
<td>Moments and Conditional statistics</td>
<td>2</td>
</tr>
<tr>
<td>Introduction to Random Processes</td>
<td>3</td>
</tr>
<tr>
<td>Stationary Processes</td>
<td>3</td>
</tr>
<tr>
<td>Correlation function and Power Spectral Density</td>
<td>3</td>
</tr>
<tr>
<td>Time Averaging and Ergodicity</td>
<td>3</td>
</tr>
<tr>
<td>Examples of random processes arising in Engineering</td>
<td>Chapters 3 and 4</td>
</tr>
<tr>
<td>Input/Output relationships for linear systems with stochastic inputs</td>
<td>4</td>
</tr>
<tr>
<td>Discrete Linear Models (if time permits)</td>
<td>5</td>
</tr>
</tbody>
</table>

Grading Procedure :

Homework: ~ 1 per week (due in one week) - the lowest HWK grade is dropped 10%

Computer Projects (Using Matlab) 10%

- Generation of Random Variables having various Probability Density Functions (PDF)
- Calculation of sample mean, variance and autocorrelation
- Estimation of PDFs and Cumulative Distribution, Histogram
- Generation and Whitening of colored Random Processes
- Estimation of Power Spectral Density using FFT

In class Quiz: ~ 1 per week - the lowest quiz grade is dropped 5%

Mid-term. Chapters 2 and 3 (part). (Oct. 17, 2006) 35%

Final. Comprehensive, (3:15-5:15 PM, Thursday, Nov. 16th, 2006) 40%

NOTES

- The lowest marks obtained in the Homework sets and in-class Quizzes will be dropped for each student.

- CAUTION: Each student is expected to complete all homeworks and Computer Projects entirely on their own. Copying or sharing of homeworks or Project Reports or Computer codes, or any form of cheating during examinations will not be tolerated and will result in prompt reporting to the appropriate authorities. If you need help on any matter related to the course, please feel free to contact the Instructor for personal attention.

- In accordance with the standard college policy, scholastic dishonesty of any kind would also result in a prompt F grade for the course.

- There will be NO makeup examinations (Mid-term or Final) barring extreme circumstances (injury or illness certifiable by a qualified physician). The students are advised to inform and seek permission from the instructor regarding inability to attend a test due to valid causes prior to the examination.