becomes h. See Figure 3. The parent of h is u. The node h of course has no children, and there is no meaning yet for either $\text{hic}(h)$, or $\text{ltr}(h)$. We define $\text{hic}(h)$ as u, and $\text{ltr}(h) = \text{dot}$. Thus, for all cellids x, other than the rootid, either $\text{hic}(\text{hic}(x)) = x$ or $\text{hic}(x) = \text{nilid}$.

\[
\textbf{type} \text{ ringed-trie := trie except (}
\]

\[
\text{function} \text{ childrenq}(u: cids) :=
\]

\[
\text{value} q: \text{seq cids such that}
\]

\[
\text{if } (\text{ if (}
\]

\[
\text{hic}(u) = \text{nilid } \Rightarrow q = []; \text{ else } \Rightarrow (\text{ q[1] = hic}(u),
\]

\[
\text{ltr}(\text{q[1]}) = \text{hdr},
\]

\[
\text{hic}(\text{q[1]}) = u,
\]

\[
\text{nxt}(\text{q[1]}) = \text{q[#]},
\]

\[
\text{for } i: 1..#-1 (\text{ q[i] = nxt}(\text{q[i+1]}),
\]

\[
\text{ })) \text{)) }\]

26