Overview

- Considerations when packaging MEMS
- Self-Assembly of MEMS
- Integration

Packaging: Considerations

- Ambient Light
 - UV, visible, IR detectors
 - CCD sensor
 - Glass/Quartz Window

- Pressure
 - Pressure Sensor
 - Sonic Transducer
 - Bonding

- Ambient Atmosphere
 - Chem-Bio Detector
 - Humidity Sensor

- Guided Light
 - Optical Switch
 - Multiplexer
 - Video Display
 - Scanning
 - Fiber Optics
 - Hermetic Seal
 - Alignment
 - Attachment

- Heat
 - Temperature Sensor
 - IR detector
 - Heat Conducting Medium
 - Non-Insulating Package
 - High Thermal Conductivity Interface

- Strain
 - Strain Gauge

- Fluid
 - Chem-Bio Detector
 - Medical Pressure Sensor
 - Micro Pump
 - Lab on Chip
 - Generator

- Contamination
- Encrustation
- Oxidation
- Hermetic Seal
- Micro to Macro Direct Contact
- Tube - Chip Interface
- Epoxy
- Plastic Tube
Fabrication Sequence

- Surface Preparation
- Film Formation
- Lithography
- Etching
- Impurity Doping
- Anneal
- Mask Set
- Inspection/Test
- Subdicing
- Packaging
- Dicing
- Final Test

Dicing

- Precision slices of semiconductor or ceramic wafers
 - 100 µm wide cuts in Si with a diamond blade
Wire Bonding

- To connect electrical contacts on chip to package or other chips
 - Gold or Aluminum wires 25 µm in diameter

Packaging

Wirebonding

Adhesive
Packaging

• Common Types of Packages
 • Ceramic with brazed cap
 • Molded
 • Metal Can

Microelectronic Packaging Classifications

• As defined in the packaging text by Pecht, packaging is done on five levels, each with its own requirements:
 • Zero-level packaging – The die itself that includes interconnections between different components on the die.
 • Level 1 packaging – The die is put in a larger package made of metal, ceramic, plastic, or other materials, and the die is wired to the package.
 • Level 2 packaging – Multiple chips are packaged together into one module. This level of packaging is sometimes not used or needed.
 • Level 3 packaging – Several Level 1 and/or Level 2 packages, along with discrete circuit components, are integrated into a circuit board, often with interconnections printed on it.
 • Level 4 packaging – Several circuit boards are integrated together, along with associated power circuits, cooling, and an enclosure, to create a fully packaged working product.
0-level

- Wafer Bonding – massively parallel encapsulation

![Diagram of wafer bonding](image)

- Wafer Bonding Techniques

 - **60-200°C oven**
 - capping wafer
 - solder layer
 - silicon substrate
 - bonding materials
 - room temperature

 - **150-600°C oven**
 - capping wafer
 - solder layer
 - silicon substrate
 - bonding materials
 - 60-200°C oven for epoxy

 - **Localized Heater Bonding**
 - capping wafer
 - bonding material
 - micro-heaters
 - silicon substrate
 - room temperature

 - **Thermo compression Bonding**
 - capping wafer
 - silicon substrate
 - bonding material
 - room temperature
0-level

- Thin Film Encapsulation
 - (1) Microstructure Fabrication, (2) Additional Sacrificial Layer, (3) Encapsulation Layer, (4) Release of (2).
 - Encapsulation Layer is either full of holes or “porous”
 - A solid encapsulation can be use if sacrificial layer can be decomposed or diffuse out of encapsulation.

![Etch Holes and Dielectric Encapsulation Diagram]

P. Monajemi et al., 2005

Decompose Unity @ 200-300 °C
Packaging: Examples

Motorola MPX4080D series piezoresistive differential pressure sensor

Open port to sensor and open port with transmission medium.
Packaging: Examples

DMD Packaging

Figure from: Michael A. Mignardi, “From ICs To DMDs,” TI Technical Journal, Jul-Sep, 1998, pp. 56–63.
Self-Assembly

• Problem:
 • Surface micro-machining creates planar structures.
 • The assembly (lifting) of hinged micro-structures is commonly used to achieve 3-D functionality.
 • Current assembly methods are complex, difficult, real-estate consuming, impractical, unreliable, and/or not fit for commercial production.

• Solution -- Solder Self-Assembly:
 • Simple, Compact, and Powerful
 • Existing Processing Step
 • No External Control Wiring
 • Good Electrical, Mechanical, and Thermal Connection
 • Suited for Mass Production

Example of self-assembly using MEMS
Description of Solder Self-Assembly of MEMS

- The basic solder assembly element can be attached to larger structures.
- Known volumes of solder can be applied.

Micro-switch assembled with 8 mil Pb/Sn 37/63 manufactured solder spheres.
Solder Self-Assembly Examples

- Complex hinged structures and arrays can be created that were previously unrealizable using standard micro-machining processes.
 - The following examples were assembled using volumes of solder equivalent to 8 mil diameter spheres.

Examples

- Deposition & Microrobot Legs
 - Assembled with volumes of pure indium equivalent to a sphere of diameter 15 μm.
 - Assembled with volumes of pure indium equivalent to a sphere of diameter 37 μm.

Examples:

- 14 Hinged-Structure
- 2 Dipole Antennas
- 5-plate structure
- Outlines of gold pads
Solder Self-Assembly Examples

- Solder self-assembled micro axial flow fan

![Micro axial flow fan](image1)

- Fiber Optic Cable Gripper

![Fiber Optic Cable Gripper](image2)

Assembled with 8 mil 63Sn/37Pb manufactured solder spheres
Polymer Self-Assembly Examples

- Photoresist

- Structures can also be assembled using deposited and patterned polymers -- in this case, AZP4620 positive photoresist, initially 20 μm thick.

Solder Shape Modeling Using Minimum Surface Energy

- *Surface Evolver* can be used to find the shape of molten solder in two stages:

Stage 1 -- One Solder Joint:
Fixed plate angle, fixed plate dimensions, fixed solder volume.

Stage 2 -- Vary the plate angle only.
IC Integration

- MEMS First
 + IC fab is not compromised
 + Allows high temperature anneals
 - Can result in difficult interconnects
 - Complicates release
- IC First
 + IC Fab is not compromised
 + Most expensive processing done first
 - Limits processing temperatures and thus material choices
- Integrated Process
 + Fewest number of steps
 - Greatest complexity

Packaging

- Packaging
 + Puts devices into an easily manipulated container
 + Provides the system with the proper environmental interaction
- Cost of Packaging is non-trivial
 + often 70%-80% of total unit cost
- IC Packaging
- MEMS specific Packaging
Packaging

- Where do we release
 - What about dust particles
- How do we seal
 - Must maintain free motion
- What about access
 - Optical or pressure interconnects

Primary IC Issues

- Electrical Connectivity
 - Interconnects
 - RF?
- Reliability
 - Au/Al
- Thermal Management
 - Heat Sink/Fan
- Environment
- COST!!!
- Automation