Transducers: Actuators
Overview

- Transducers
- Basic Mechanics
- Actuators
 - Electrostatic
 - Electro-Thermal
 - Bimorph Electro-Thermal
 - Residual Stress
 - Mechanical Components

Transducers

- Transducer: a device that transfers power from one form to another
- Transducers can be divided into two categories
 - Sensors – reacts to environment
 - Actuators – acts on environment

- Can you think of common examples of sensors and actuators?
Transducers

• Transducer Schemes
 • One or more of the below components may or may not be utilized
 • A transducer can perform a dual role as sensor and actuator

Transducers: Examples from the Human Body

Signal Classification

- Measurand
- Sensor
- Processor
- Actuator

Signal Classification

- Measurand
- Sensor
- Processor
- Actuator

Example Components:

- Retina
- Choclea
- Nerves
- Olfactory Receptor Cells
- Taste Buds

Example Senses:

- Sensory
- Mechanical
- Chemical
- Biological

Example Actuators:

- Muscles
- Glands
- Mind
Transducers

Sensor Classification

Signal Classification	**Measurands**
Thermal | Temperature, heat, heat flow, entropy, heat capacity, and etc.
Radiation | Gamma rays, X-rays, ultra-violet, visible, infra-red, micro-waves, radio waves, phase, and etc.
Mechanical | Position, displacement, velocity, acceleration, force, torque, pressure, mass, flow, acoustic wavelength and amplitude, and etc.
Magnetic | Magnetic field, flux, magnetic moment, magnetization, magnetic permeability, and etc.
Chemical | Humidity, pH level and ions, concentration of gases, vapors and odors, toxic and flammable materials, pollutants, and etc.
Biological | Sugars, proteins, hormones, antigens, and etc.
Electrical | Charge, current, voltage, resistance, conductance, capacitance, inductance, dielectric permittivity, phase, frequency, and etc.

Actuator Classification

Signal Classification	**Action**
Thermal | heat, cool, radiate, and etc.
Radiation | emit light and other radiation
Mechanical | Provide displacement, velocity, acceleration, force, torque, pressure, mass, flow, and etc.
Magnetic | Provide magnetic field, flux, magnetic moment, magnetization, magnetic permeability, etc.
Chemical | Change/Provide humidity, pH level and ions, concentration of gases, vapors and odors, muscle stimulation, and etc.
Biological | Provide mechanical actuation, computing, etc.
Electrical | Provide charge, current, voltage, and etc.
Transducers

- Ideal Sensor Characteristics
 - Linear Operation
 - Noise Free Response
 - Zero Baseline
 - Fast Response Time
 - Large Frequency Bandwidth
 - No Saturation
 - High Sensitivity
 - High Resolution
 - Reliable and Rugged
 - No Performance Drift
 - Intolerant to Interference
 - No Hysteresis, Repeatable
 - Low Power Consumption
 - Simple Construction

- Ideal Actuator Characteristics
 - Aforementioned, plus ….
 - High Force Per Unit Volume
 - Large Deflections
 - Simplicity of Drive and Control
 - Simple Interface

Overview

- Transducers
- Basic Mechanics
- Actuators
 - Electrostatic
 - Electro-Thermal
 - Bimorph Electro-Thermal
 - Residual Stress
 - Mechanical Components
Axial Stress & Strain

- Strain, ε, is the deformation of a solid ($\Delta L/L$) due to stress
- Stress, σ, is the force acting on a unit area of a solid (F/A)
- The Young’s Modulus, E, is the ratio of stress over strain
 - describes the “firmness” of a material (hard, E large, soft, E small)

$$E = \frac{\text{stress}}{\text{strain}} = \frac{\sigma}{\varepsilon} \quad \text{(typically in N/m}^2\text{)}$$

Shear Stress & Strain

- Shear stress is force applied to an object in the plane of an opposing force
 - Such as an anchor point
 - The shear modulus of elasticity, G, represents the degree of displacement an object will allow under shear stress.
- Shear strain, γ, is related to the angle that a deformed element’s sides make with respect to its original shape

$$G = \frac{\text{shear stress}}{\text{shear displacement angle (rad)}} = \frac{F}{\Delta X} = \frac{A}{\Delta X} \gamma \quad \text{(typically in N/m}^2\text{)}$$
Shear Stress & Strain Cont.

For isotropic materials (those having identical properties in every direction, generally not the case for most single-crystal materials), shear modulus, \(G \), is related to the elastic modulus, \(E \), by

\[
E = 2G(1 + \mu) = 3K(1 - 2\mu)
\]

\(\mu \) is Poisson’s ratio

\(K \) is the bulk modulus

The bulk modulus is defined as the ratio of hydrostatic stress to volume compression

\[
K = \frac{\text{hydrostatic stress}}{\text{volume compression}} = \frac{F}{\frac{4}{3} \Delta V/V}
\]

The bulk modulus of a material represents its volume change under uniform pressure. In general, solids are less compressible than liquids due to their rigid atomic lattices.

For Ex. Water – \(K = 2.0 \times 10^9 \) N/m\(^2\)

Aluminum – \(K = 7 \times 10^{10} \) N/m\(^2\)

Steel – \(K = 14 \times 10^{10} \) N/m\(^2\)

Poisson’s Strain

Typical values are 0.2 to 0.5 for most materials

For most metals, Poisson’s ratio is \(\sim 0.3 \)

Rubber’s have a Poisson’s ratio closer to 0

Cork has a Poisson’s ratio close to 0

Poisson’s ratio \(\nu \) or \(\mu \) always defined as a positive value
Actuators: Electrostatic

- Advantages
 - Simple Designs
 - Simple Fabrication
 - High Frequency Operation
 - Low Power
- Disadvantages
 - Low Force Per Unit Volume
 - High Drive Voltages
 - Nonlinear Operation

Actuators: Electrostatic

- Parallel Plate
 - Two plate like structures facing each other, with a potential difference between them, will be drawn together due to the force of electrostatic attraction.
Actuators: Electrostatic

• Parallel Plate Examples

[Images of parallel plate examples]

Actuators: Electrostatic

• Parallel Plate Examples: Texas Instruments Digital Micromirror Device™

[SXGA device with black aperture: 1280x1024; 1,310,720 mirrors]
Actuators: Electrostatic

- Notes:
 - Displacement vs. Actuation Voltage
 - Spring Constants
 - Damping Coefficient
 - Lumped Element Dynamic Model
Actuators: Electrostatic

- Comb Drive
 - Sandia Example

- Comb Drive
 - Stationary Comb
 - Moveable Comb
 - Anchor
 - Folded Spring Suspension Truss
 - Stationary Comb
 - Drive Line
 - Sense Line
 - Bumper/Limiter
 - Ground

EE 480/680, Summer 2006, WSU, L. Starman
MicroElectroMechanical Systems (MEMS)
Actuators: Electrostatic

• Comb Drive Notes:
 • Displacement vs. Actuation Voltage
 • Spring Constants

Actuators: Electrostatic

• Scratch Drive
 • First demonstrated by:

\[\Delta x \sim \text{few nm} \]

\[\text{strong force} \]
Actuators: Electrostatic

• Scratch Drive
Actuators: Electrostatic

• When driving with a zero-bias input signal, the frequency of operation is twice the input signal frequency!

\[
\frac{1}{f_{\text{Drive}}} \quad \frac{1}{2f_{\text{Drive}}}
\]

Actuator Displacement

Drive Voltage

Actuators: Electrostatic

• Cantilever
 • Simpler Structure
 • Modeling Voltage vs. Deflection more complicated.

Actuators: Resonant Frequency

- Best and Easiest: By Eye
- 2nd Best: Electrically (Network/Spectrum Analyzer/Impedance Analyzer)

Comb Setup

![Comb Setup Diagram]

Cantilever Setup

![Cantilever Setup Diagram]

Actuators

- Transducers
- Actuators
 - Electrostatic
 - Electro-Thermal
 - Bimorph Electro-Thermal
 - Residual Stress
 - Mechanical Components
Actuators: Electro-Thermal

- Advantages
 - Simple Designs
 - Simple Fabrication
 - High Force Per Unit Volume
 - Low Voltage

- Disadvantages
 - Temperature Dependent
 - High Electric Power Consumption
 - Low Frequency Operation

Material expands due to Ohmic or Joule Heating causing motion of actuator structure.

\[q = \text{Power} = I^2 R = \frac{I^2 L \rho}{A} \quad \text{or} \quad \frac{V^2}{R} = \frac{V^2 A}{L \rho} \quad \hat{q} = \frac{\text{Power}}{\text{Volume}} = \frac{I^2 \rho}{A^2} \quad \text{or} \quad \frac{V^2}{L^2 \rho} \]

Heat Transfer

\[k \frac{\partial^2 T}{\partial x^2} + \hat{q} = 0 \]

Thermal Expansion

\[T(x) = \frac{1}{2} k \left(Lx - x^2 \right) + \frac{1}{L} (T_2 - T_1)x + T_1 \quad L_{new} (x) = \left[1 + \alpha (T(x) - T_0) \right] dX \]
Actuators: Electro-Thermal

• Laterally/Horizontally Deflecting
 • Motion that is parallel to the plane of the substrate

Example properties needed for modeling an electro-thermal actuator:
- \(\rho \) = electrical resistivity = \(2.3 \times 10^{-5} \) \(\Omega \) m
- \(\alpha \) = coefficient of thermal expansion = \(29 \times 10^{-7} \) K\(^{-1}\)
- \(\alpha_r \) = temperature coefficient of resistance = \(1.25 \times 10^{-3} \) K\(^{-1}\)
- \(k \) = thermal conductivity = 32 W/mK
- \(E \) = Young’s modulus = 169 GPa
- \(v \) = Poisson’s ratio = 0.22

Optimum Dimensions:
1. \(g \) = as small as possible
2. \(h \) = as tall as possible
3. \(W_c/W_h = 7 \)
4. \(W_h \) = as small as possible
5. \(L_f \approx L_h/4 \)
6. Increasing the temp. difference between the cold and hot arm increases deflection.

Comtois et al., 1995

Optimum Dimensions (Continued):
- \(W_c = 14 \mu m \)
- \(W_f = g = 2 \mu m \)
- \(L_c = 35 \mu m \)
- \(L_f = 35 \mu m \)
- \(L_h = 200 \mu m \)
- \(R = 1558 \Omega \)
- Force \(\approx 20 \mu N \)

Comtois et al., 1995

V. Bright et al., AFIT, 1996

Actuators: Electro-Thermal

• Laterally (Horizontally) Deflecting
Actuators: Electro-Thermal

- Low resistance wiring and Si/Au eutectic

“Burned out” electro-thermal actuator hot arm

Eutectic Compound 18.6%Si/81.4%Au with melting temperature of 363 °C

Actuators: Electro-Thermal

- Temperature Distribution (Relative Magnitude)

Temperature (K/μm)

$T_{\text{hot arm}} = 293$ K

$T_{\text{cold arm}} = 293$ K

Conduction through air

Air

adiabatic top and vertical sides

Hot Arm

Cold Arm

Temperature vs. x (μm)
Actuators: Electro-Thermal

V. Bright, AFIT
Actuators: Electro-Thermal

D. Burns et al., AFIT

Design measurements for thermal actuators

<table>
<thead>
<tr>
<th></th>
<th>1-H actuator</th>
<th>2-H actuator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold arm length</td>
<td>182 μm</td>
<td>182 μm</td>
</tr>
<tr>
<td>Cold arm width</td>
<td>14 μm</td>
<td>14 μm</td>
</tr>
<tr>
<td>Flexure length</td>
<td>38 μm</td>
<td>38 μm</td>
</tr>
<tr>
<td>Flexure width</td>
<td>2.5 μm</td>
<td>2.0 μm</td>
</tr>
<tr>
<td>Inner hot arm length</td>
<td>200 μm</td>
<td>222 μm</td>
</tr>
<tr>
<td>Outer hot arm length</td>
<td>not applicable</td>
<td>252 μm</td>
</tr>
<tr>
<td>Hot arm width</td>
<td>2.5 μm</td>
<td>2.0 μm</td>
</tr>
<tr>
<td>Separation between inner hot arm and cold arm</td>
<td>3 μm</td>
<td>3 μm</td>
</tr>
<tr>
<td>Separation between hot arms</td>
<td>not applicable</td>
<td>3 μm</td>
</tr>
</tbody>
</table>

Comparison of single hot-arm (1-H) and double hot-arm (2-H) actuator operating properties

Actuators: Electro-Thermal

- Vertically Deflecting

- Piston Mirrors

W. D. Cowan, AFIT
Actuators: Electro-Thermal

- Assembled Devices: Micro-Robot Leg

![Micro-Robot Leg Image](image)

- Low resistance wire necessary for electro-thermal actuation

![Low Resistance Wire Image](image)

Chains are very high resistance, but will provide potential for electrostatic actuators.

Does not work for electro-thermal

![Chains Image](image)
Actuators: Electro-Thermal

- Assembled Devices: Mirror & Micro-Grippers

W. D. Cowan, AFIT
J. Comtois, AFIT

Actuators: Electro-Thermal

- Back bending
 - The permanent plastic deformation of a “hot arm”.
 - Performed once before beginning normal operation.

W. D. Cowan, AFIT

R. Reid, AFIT, 1996
Actuators: Electro-Thermal

- The design of an electro-thermal actuator is a compromise between thermal and mechanical efficiency!
 - Design domain size
 - Location of electrodes
 - Location of work point
 - Electrical resistance
 - Amount of material used
 - Available voltage
 - Optional:
 - Analytical modeling of the temperature distribution of a laterally deflecting electro-thermal actuator.

![Diagram showing electro-thermal actuator design parameters and temperature distribution.]

Graph:
- Temperature (°C) vs. Distance along actuator (m)
- Max temperature: $T_{max} = 1523.7436$°C
- Max displacement: $x_{max} = 130.3 \, \mu m$
Overview

- Transducers
- Actuators
 - Electrostatic
 - Electro-Thermal
 - Bimorph Electro-Thermal
 - Residual Stress
 - Mechanical Components

Actuators: Bimorph Electro-Thermal

- An actuator made up of a sandwich of at least two layers with different coefficients of thermal expansion and an internal electric heater.
Actuators: Bimorph Electro-Thermal

Actively moves when heated by an internal electric heater.

\[R = \frac{(t_1 - t_2)}{6(\alpha_1 - \alpha_2)(T - T_0)t_1t_2} \]

- \(R \) = Radius of Curvature
- \(t \) = thickness
- \(\alpha \) = coefficient of thermal expansion
- \(T \) = temperature
- \(T_0 \) = reference temperature

Overview

- Transducers
- Actuators
 - Electrostatic
 - Electro-Thermal
 - Bimorph Electro-Thermal
 - Residual Stress
 - Mechanical Components
Actuators: Residual Stress

- A passive actuator, usually in the form of a cantilever, made up of a sandwich of at least two layers with different coefficients of thermal expansion.

 assembled with residual stress cantilevers.

Possibly assisted by unintentional agitation during release, rinse, and/or dry.

Actuators: Residual Stress

- Assembled with intentional agitation during release and rinse.

Assisted by stressed cantilevers.
Actuators: Other

- Most other actuators are further extensions of the basic examples covered in the previous slides.
- Other types of actuation include:
 - Piezoelectric
 - Magnetic / Electro-Magnetic
 - Pneumatic
 - Shape Memory Alloy

Actuators: Piezoelectric

- In a piezoelectric material, an applied voltage induces an internal stress, resulting in an expansion of the material.
- Conversely, for sensor use, the application of an external force induces an electric field across the material.
Actuators: Magnetic / Electro-Magnetic

Actuators: Pneumatic

Actuators: Shape Memory Alloy (SMA)

Overview

- Transducers
- Actuators
 - Electrostatic
 - Electro-Thermal
 - Bimorph Electro-Thermal
 - Residual Stress
- Mechanical Components
Mechanical Components: Substrate or Staple Hinges

\[
l_h \geq t_p \cos(\alpha) + t_p \sin(\alpha)
\]

\[
l_h \geq t_p + t_p \cos(\alpha) + t_t \sin(\alpha)
\]

\[
l_h \geq \text{minimum fabrication spacing (for } \alpha > 90^\circ)\]

Mechanical Components: Scissor Hinges

- “Up - Folding”
 \[
l_h \geq t_p \cot\left(\frac{\alpha}{2}\right)
\]
 \[
l_h \geq \text{minimum fabrication spacing (for } \alpha > 90^\circ)\]
Mechanical Components: Scissor Hinges

- “Down - Folding”

Mechanical Components: Hinges

- Down - Folding
- Up - Folding
- Slider
- Substrate Hinges
Mechanical Components: Pin Joint

Mechanical Components: Linkages
Mechanical Components: Locks

4 μm steps

Locking Mechanism
Mechanical Components: Springs

Mechanical Components: Other

- Gears
- Flexible Hinges
- Corrugation or Stiffening