Notes: 1. You are allowed one 8 1/2 x 11 sheet of notes and Z-transform tables.
2. Show work for partial credit.

Find \(\frac{C(z)}{R(z)} \) using signal flow graph.

Let \(G(z) = K \frac{z}{(z-1)(z-0.6065)} \)

(a) Find the value of \(K \) for \(e_{ss} \) to unit ramp input to be \(\leq 0.25 \)
(b) For the value of \(K \) found in part (a), find \(T \), \(w_n \), and \(\zeta \) of the system shown in Figure 2.
(c) Find the value of \(K \) for stability. Also find the frequency of oscillation.
3(a) (8 pts)

Map the poles given in the s-plane to the z-plane for $T = 0.1 \pi$ sec

3(b) (9 pts)

Give the approximate transient response to unit step input for each of the z-plane poles.