1. \[e(t) \xrightarrow{Z\cdot O\cdot H} p(t) \quad T = \frac{\pi}{15} \text{ sec} \]

A signal \(e(t) = 5 \cos t \) is applied to a sampler and \(Z\cdot O\cdot H \) circuit with \(T = \frac{\pi}{15} \) sec.

(a) List all the frequencies in the output \(p(t) \) which are less than 30 rad/s.

(b) The output of the circuit has a frequency component of 1 rad/s. Find the magnitude and phase of this component.

2. Given \(G(s) = \frac{e^{-2st}}{s(s+10)} \), \(T = 0.1 \) sec

Using the residue method, find \(G(z) \).

3. \[x(t) \xrightarrow{T=0.1} G(s) \xrightarrow{G(p)} C(t) \]

4. (a) Write \(\frac{C(z)}{R(z)} \) in terms of \(G(z) \).

(b) Find \(G(z) \) in the simplified form.

(c) Using the results of (a) and (b), find \(\frac{C(z)}{R(z)} \) in the simplified form.

(d) If \(x(t) = u(t) \), find \(C(z) \).

(e) Now find \(C(0), C(T), C(2T) \) and \(\lim_{n \to \infty} C(nT) \).
4. Convert the analog controller $G_c(s)$ given below to a digital controller using:
 (a) Matched Z-transform
 (b) Bilinear transformation with prewarping

 $$G_c(s) = 10 \frac{s+1}{s+10}$$

 Assume $T = 0.1$ sec